


Use Python language to connect to Baidu's natural language processing interface to make the program intelligent
Use Python language to connect to Baidu’s natural language processing interface to make the program intelligent
With the rapid development of artificial intelligence, natural language processing has become a hot topic for research and development One of the hot spots. Baidu Natural Language Processing Interface is a powerful tool that can help us implement text sentiment analysis, lexical analysis, named entity recognition and other functions. This article will introduce how to use Python language to connect to Baidu's natural language processing interface, and demonstrate its intelligent capabilities through code examples.
First, we need to register and create a Baidu developer account, and then create a natural language processing application. During the process of creating an application, we can obtain the application's API Key and Secret Key, which will be used in subsequent code.
Next, we need to install Python’s request library requests and json parsing library json.
pip install requests pip install json
Next, we start writing code. First, we need to import the requests and json libraries.
import requests import json
Then, we define a function to obtain the access token of Baidu natural language processing interface. This token needs to be obtained through API Key and Secret Key, and the obtained token will be used in subsequent interface access.
def get_access_token(api_key, secret_key): url = 'https://aip.baidubce.com/oauth/2.0/token' headers = {'Content-Type': 'application/json; charset=UTF-8'} params = {'grant_type': 'client_credentials', 'client_id': api_key, 'client_secret': secret_key} response = requests.post(url, headers=headers, params=params) result = json.loads(response.text) if 'access_token' in result: return result['access_token'] else: return None
Next, we define a function to call the text sentiment analysis function of Baidu’s natural language processing interface. This function receives the text content as a parameter and returns the sentiment analysis results.
def text_sentiment_analysis(access_token, text): url = 'https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify?access_token=' + access_token headers = {'Content-Type': 'application/json'} data = {'text': text} response = requests.post(url, headers=headers, data=json.dumps(data)) result = json.loads(response.text) if 'items' in result: sentiment = result['items'][0]['sentiment'] confidence = result['items'][0]['confidence'] return sentiment, confidence else: return None, None
Finally, we write the main program, call the above functions, and display the call results.
if __name__ == '__main__': api_key = 'your_api_key' secret_key = 'your_secret_key' access_token = get_access_token(api_key, secret_key) if access_token: text = input('请输入需要进行情感分析的文本:') sentiment, confidence = text_sentiment_analysis(access_token, text) if sentiment and confidence: print('文本情感分析结果:') print('情感:', sentiment) print('置信度:', confidence) else: print('调用百度自然语言处理接口失败!') else: print('获取百度自然语言处理接口的访问令牌失败!')
Through the above code example, we have implemented the call to Baidu's natural language processing interface and implemented the function of text sentiment analysis. We can call other interfaces according to our own needs to implement functions such as lexical analysis and named entity recognition.
To summarize, this article introduces how to use Python language to connect to Baidu’s natural language processing interface to achieve intelligent text analysis functions. This provides us with convenience and flexibility to implement more natural language processing tasks. I hope that through the introduction of this article, readers can flexibly use Baidu's natural language processing interface in their own projects to achieve more intelligent functions.
The above is the detailed content of Use Python language to connect to Baidu's natural language processing interface to make the program intelligent. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

The key to running Jupyter Notebook in VS Code is to ensure that the Python environment is properly configured, understand that the code execution order is consistent with the cell order, and be aware of large files or external libraries that may affect performance. The code completion and debugging functions provided by VS Code can greatly improve coding efficiency and reduce errors.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.
