Home Backend Development Python Tutorial How to use Python to perform lighting compensation on pictures

How to use Python to perform lighting compensation on pictures

Aug 18, 2023 pm 11:07 PM
python image processing Light compensation image enhancement

How to use Python to perform lighting compensation on pictures

How to use Python to perform lighting compensation on pictures

Abstract:
For digital image processing, uneven lighting is one of the common problems. This article will introduce how to use the OpenCV library in the Python programming language to perform lighting compensation on pictures. We will extract the lighting information of the image, and then adjust the brightness and contrast of the image based on this information to achieve the effect of uniform lighting.

  1. Import the required libraries
    First, we need to import the OpenCV library in Python and other basic libraries:
import cv2
import numpy as np
import matplotlib.pyplot as plt
Copy after login
  1. Load and display the original Image
    Load the image that requires lighting compensation and display it using OpenCV's imshow function:
image = cv2.imread('image.jpg',1)
cv2.imshow('Original Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Copy after login
  1. Extract lighting information
    In order to extract the lighting information of the image, we can use Statistically based methods. Among them, a common method is to obtain the light intensity of the image by calculating the average value of the image:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mean = np.mean(gray_image)
Copy after login
  1. Adjust the brightness and contrast of the image
    According to the lighting information, we can pass Adjust the brightness and contrast of the image to achieve a uniform lighting effect. Specifically, we will use the cv2.convertScaleAbs function from the OpenCV library to adjust the brightness and contrast of the image:
alpha = 1.0 / mean
beta = 0
light_compensated_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
Copy after login
  1. Display and save the processed image
    Finally, we can use OpenCV's imshow function displays the processed image and uses the cv2.imwrite function to save it to the disk:
cv2.imshow('Light Compensated Image', light_compensated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.imwrite('light_compensated_image.jpg', light_compensated_image)
Copy after login
  1. Results and Discussion
    Through the above steps, we successfully Lighting compensation was performed on the original image to eliminate the problem of uneven lighting. By adjusting the brightness and contrast of the image, we give the entire image a more even lighting effect. Finally, we can verify our results by displaying and saving the processed image.

Conclusion:
This article demonstrates the process of lighting compensation for images by using Python and the OpenCV library. Uneven lighting is a common problem in digital image processing, but by extracting lighting information and adjusting the brightness and contrast of the image, we can effectively achieve uniform lighting effects. As a powerful programming language, Python provides various image processing tools and libraries, making illumination compensation simpler and more efficient.

The above is the detailed content of How to use Python to perform lighting compensation on pictures. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: Statistics Mathematical Modules in Python: Statistics Mar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1 Serialization and Deserialization of Python Objects: Part 1 Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python? How to Create Command-Line Interfaces (CLIs) with Python? Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Scraping Webpages in Python With Beautiful Soup: Search and DOM Modification Scraping Webpages in Python With Beautiful Soup: Search and DOM Modification Mar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles