Image generation technology in C++
With the increasing popularity of computer vision and image processing in various fields, the demand for image generation technology is also getting higher and higher. As a programming language widely used in the fields of image processing and computer vision, C is also widely used in image generation. This article will introduce image generation technologies commonly used in C, including fractal generation, gradient color generation, texture image generation, etc. implemented through code.
1. Fractal generation
Fractal refers to a geometric figure with self-similarity. Its implementation includes recursion and iteration. In C, we can use recursion to achieve fractal generation. Common fractal graphics include Koch snowflakes, triangle fractals, fractal trees, etc.
Take the Koch snowflake as an example. The generation process is to divide the edge into three equal parts, remove the middle part and replace it with two edges. This cycle is recursively generated until the predetermined number of layers is reached. The following is a simple code implementation:
void DrawKoch( int n, POINT a, POINT b ) { if (n == 0) { line(a.x, a.y, b.x, b.y); } else { POINT offset = { (b.x - a.x) / 3, (b.y - a.y) / 3 }; POINT p1 = { a.x + offset.x, a.y + offset.y }; POINT p2 = { b.x - offset.x, b.y - offset.y }; POINT p3 = { (int)(0.5*(a.x + b.x) - sqrt(3) / 6 * (b.y - a.y)), (int)(0.5*(a.y + b.y) + sqrt(3) / 6 * (b.x - a.x)) }; DrawKoch(n - 1, a, p1); DrawKoch(n - 1, p1, p3); DrawKoch(n - 1, p3, p2); DrawKoch(n - 1, p2, b); } }
2. Gradient color generation
Gradient color refers to the process of gradient from one color to another. In C, we can generate natural gradient colors by calculating the RGB value of each pixel. Common gradient colors include radial gradients and linear gradients.
Taking linear gradient as an example, we can calculate the RGB value of the color of each pixel according to its position in the image, and fill it in the corresponding pixel position. The following is a simple code implementation:
for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { float ratio_x = (float)j / width; float ratio_y = (float)i / height; int r = ratio_x * start_r + (1 - ratio_x) * end_r; int g = ratio_x * start_g + (1 - ratio_x) * end_g; int b = ratio_x * start_b + (1 - ratio_x) * end_b; int c = RGB(r, g, b); image.setPixel(j, i, c); } }
3. Texture image generation
Texture image refers to pasting various patterns, colors, etc. on the image to obtain good visual effects. In C, we can use different functions to generate various texture images. Common texture images include noise images, wood grain images, paper images, etc.
Take noise images as an example. Noise images refer to images with random properties. They are widely used in text, web page backgrounds, games and other fields. We can use Perlin noise or a simple noise function to generate the RGB values of each pixel of the image, thereby obtaining a noise image with random properties. The following is a simple code implementation:
for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { float ratio_x = (float)j / width; float ratio_y = (float)i / height; int r = (int)((1.0 - ratio_x) * (1.0 - ratio_y) * 255.0); int g = (int)(ratio_x * (1.0 - ratio_y) * 255.0); int b = (int)(ratio_x * ratio_y * 255.0); int c = RGB(r, g, b); image.setPixel(j, i, c); } }
To sum up, the image generation technology in C mainly includes fractal generation, gradient color generation, texture image generation, etc. The application of these technologies can greatly broaden the application scope of image processing and computer vision, and also puts forward higher requirements for developers.
The above is the detailed content of Image generation technology in C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Wasserstein distance, also known as EarthMover's Distance (EMD), is a metric used to measure the difference between two probability distributions. Compared with traditional KL divergence or JS divergence, Wasserstein distance takes into account the structural information between distributions and therefore exhibits better performance in many image processing tasks. By calculating the minimum transportation cost between two distributions, Wasserstein distance is able to measure the minimum amount of work required to transform one distribution into another. This metric is able to capture the geometric differences between distributions, thereby playing an important role in tasks such as image generation and style transfer. Therefore, the Wasserstein distance becomes the concept

VisionTransformer (VIT) is a Transformer-based image classification model proposed by Google. Different from traditional CNN models, VIT represents images as sequences and learns the image structure by predicting the class label of the image. To achieve this, VIT divides the input image into multiple patches and concatenates the pixels in each patch through channels and then performs linear projection to achieve the desired input dimensions. Finally, each patch is flattened into a single vector, forming the input sequence. Through Transformer's self-attention mechanism, VIT is able to capture the relationship between different patches and perform effective feature extraction and classification prediction. This serialized image representation is

Super-resolution image reconstruction is the process of generating high-resolution images from low-resolution images using deep learning techniques, such as convolutional neural networks (CNN) and generative adversarial networks (GAN). The goal of this method is to improve the quality and detail of images by converting low-resolution images into high-resolution images. This technology has wide applications in many fields, such as medical imaging, surveillance cameras, satellite images, etc. Through super-resolution image reconstruction, we can obtain clearer and more detailed images, which helps to more accurately analyze and identify targets and features in images. Reconstruction methods Super-resolution image reconstruction methods can generally be divided into two categories: interpolation-based methods and deep learning-based methods. 1) Interpolation-based method Super-resolution image reconstruction based on interpolation

Java Development: A Practical Guide to Image Recognition and Processing Abstract: With the rapid development of computer vision and artificial intelligence, image recognition and processing play an important role in various fields. This article will introduce how to use Java language to implement image recognition and processing, and provide specific code examples. 1. Basic principles of image recognition Image recognition refers to the use of computer technology to analyze and understand images to identify objects, features or content in the image. Before performing image recognition, we need to understand some basic image processing techniques, as shown in the figure

How to deal with image processing and graphical interface design issues in C# development requires specific code examples. Introduction: In modern software development, image processing and graphical interface design are common requirements. As a general-purpose high-level programming language, C# has powerful image processing and graphical interface design capabilities. This article will be based on C#, discuss how to deal with image processing and graphical interface design issues, and give detailed code examples. 1. Image processing issues: Image reading and display: In C#, image reading and display are basic operations. Can be used.N

Old photo restoration is a method of using artificial intelligence technology to repair, enhance and improve old photos. Using computer vision and machine learning algorithms, the technology can automatically identify and repair damage and flaws in old photos, making them look clearer, more natural and more realistic. The technical principles of old photo restoration mainly include the following aspects: 1. Image denoising and enhancement. When restoring old photos, they need to be denoised and enhanced first. Image processing algorithms and filters, such as mean filtering, Gaussian filtering, bilateral filtering, etc., can be used to solve noise and color spots problems, thereby improving the quality of photos. 2. Image restoration and repair In old photos, there may be some defects and damage, such as scratches, cracks, fading, etc. These problems can be solved by image restoration and repair algorithms

PHP study notes: Face recognition and image processing Preface: With the development of artificial intelligence technology, face recognition and image processing have become hot topics. In practical applications, face recognition and image processing are mostly used in security monitoring, face unlocking, card comparison, etc. As a commonly used server-side scripting language, PHP can also be used to implement functions related to face recognition and image processing. This article will take you through face recognition and image processing in PHP, with specific code examples. 1. Face recognition in PHP Face recognition is a

In C++ development, null pointer exception is a common error, which often occurs when the pointer is not initialized or is continued to be used after being released. Null pointer exceptions not only cause program crashes, but may also cause security vulnerabilities, so special attention is required. This article will explain how to avoid null pointer exceptions in C++ code. Initializing pointer variables Pointers in C++ must be initialized before use. If not initialized, the pointer will point to a random memory address, which may cause a Null Pointer Exception. To initialize a pointer, point it to an
