Greedy algorithm and its implementation in C++
The greedy algorithm is a commonly used algorithm idea and is widely used in many problems. The core idea is to only consider the immediate optimal solution when making a decision at each step, without considering the long-term impact.
In C, the implementation of greedy algorithms often involves basic operations such as sorting and data processing. Below, we will introduce the idea of greedy algorithm and its implementation in C for several typical problems.
1. Activity Scheduling Problem
Given a set of activities, each activity has its start time and end time, and a person can only participate in one activity at a time. Ask how to arrange activities to ensure that this person participates in the maximum number of activities.
The idea of the greedy algorithm is to first sort each activity in ascending order by the end time, and then starting from the first activity, select the activity with the earliest end time as the first activity to participate. Then, select the activity with the earliest end time that is compatible with the current activity from the remaining activities and make it the next activity to participate in. Repeat this process until all activities have been scheduled.
The following is the C code implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
2. Huffman encoding problem
Given a set of weights, they are required to be encoded into binary characters of unequal lengths string, so that the encoding length of the sum of all values is minimized.
The idea of the greedy algorithm is to first sort the weights in ascending order, select the two nodes with the smallest weights in each step to combine into a new node, and define its weight as the weight of these two nodes. Sum. Repeat this process until all nodes are combined into a root node. The binary tree corresponding to this root node is the Huffman tree. When traversing the Huffman tree, walking to the left means adding 0, and walking to the right means adding 1, so that the corresponding encoding of each weight can be solved.
The following is the C code implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
3. Solving the coin change problem
Given the face value of a set of coins and the amount of change to be made, ask the minimum required How many coins are needed to make up this amount.
The idea of the greedy algorithm is to first sort the coins in descending order by face value, then start with the coin with the largest face value, continue to take the coin until no more choices can be made, and then use the coin with the next largest face value until all the amount is collected. .
The following is the C code implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
In the actual development process, the greedy algorithm is often not the optimal solution, but its simplicity and efficiency make it widely used. Through the introduction of the above three typical problems, I believe readers can better understand and master the idea of greedy algorithm and its implementation in C.
The above is the detailed content of Greedy algorithm and its implementation in C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.
