To rotate a matrix in spiral order, we need to do the following until all inner and outer matrices are covered:
Step 1 - Move the elements in the top row
Step 2 - Move the elements in the last column
Step 3 - Move the elements in the bottom row
Step 4 - Move the elements in the first column
Step 5 - Repeat the above steps with the inner matrix present
Demonstration
using System; namespace ConsoleApplication{ public class Matrix{ public void PrintMatrixInSpiralOrder(int m, int n, int[,] a){ int i, k = 0, l = 0; while (k < m && l < n){ for (i = l; i < n; ++i){ Console.Write(a[k, i] + " "); } k++; for (i = k; i < m; ++i){ Console.Write(a[i, n - 1] + " "); } n--; if (k < m){ for (i = n - 1; i >= l; --i){ Console.Write(a[m - 1, i] + " "); } m--; } if (l < n){ for (i = m - 1; i >= k; --i){ Console.Write(a[i, l] + " "); } l++; } } } } class Program{ static void Main(string[] args){ Matrix m = new Matrix(); int R = 3; int C = 6; int[,] aa = { { 1, 2, 3, 4, 5, 6 }, { 7, 8, 9, 10, 11, 12 }, { 13, 14, 15, 16, 17, 18 } }; m.PrintMatrixInSpiralOrder(R, C, aa); } } }
1 2 3 4 5 6 12 18 17 16 15 14 13 7 8 9 10 11
The above is the detailed content of How to print a matrix of size n*n in spiral order using C#?. For more information, please follow other related articles on the PHP Chinese website!