


How to deal with the data deduplication problem in C++ big data development?
How to deal with the data deduplication problem in C big data development?
Introduction: In the C big data development process, data deduplication is a common problem. This article will introduce several methods to efficiently handle big data deduplication problems in C and provide corresponding code examples.
1. Use hash table for deduplication
Hash table is a commonly used data structure that can quickly find and store data. In the problem of data deduplication, we can use a hash table to store data that has already appeared. Every time new data is read, first check whether it exists in the hash table. If it does not exist, add the data to the hash table. in the Greek table and mark it as having already appeared.
#include <iostream> #include <unordered_set> #include <vector> void duplicateRemoval(std::vector<int>& data) { std::unordered_set<int> hashSet; for (auto iter = data.begin(); iter != data.end();) { if (hashSet.find(*iter) != hashSet.end()) { iter = data.erase(iter); } else { hashSet.insert(*iter); ++iter; } } } int main() { std::vector<int> data = {1, 2, 3, 4, 5, 4, 3, 2, 1}; duplicateRemoval(data); // 输出去重后的数据 for (auto val : data) { std::cout << val << " "; } std::cout << std::endl; return 0; }
2. Use bitmaps for deduplication
When we face a very large amount of data, using a hash table may take up a lot of memory space. At this point, we can use bitmaps to perform deduplication operations. Bitmap is a very compact data structure that can represent a large number of Boolean values. We can use the value of each data as the subscript of the bitmap and mark the position where the data appears as 1. When encountering a marked position, it means that the data has been repeated and can be deleted from the original data.
#include <iostream> #include <vector> void duplicateRemoval(std::vector<int>& data) { const int MAX_NUM = 1000000; // 假设数据的范围在0至1000000之间 std::vector<bool> bitmap(MAX_NUM, false); for (auto iter = data.begin(); iter != data.end();) { if (bitmap[*iter]) { iter = data.erase(iter); } else { bitmap[*iter] = true; ++iter; } } } int main() { std::vector<int> data = {1, 2, 3, 4, 5, 4, 3, 2, 1}; duplicateRemoval(data); // 输出去重后的数据 for (auto val : data) { std::cout << val << " "; } std::cout << std::endl; return 0; }
3. Use sorting to deduplicate
If there is no memory limit on the original data and the data has been sorted, we can use the sorting algorithm to perform deduplication. The sorting algorithm can make the same data in adjacent positions, and then we only need to traverse the data once and delete the duplicate data.
#include <iostream> #include <algorithm> #include <vector> void duplicateRemoval(std::vector<int>& data) { data.erase(std::unique(data.begin(), data.end()), data.end()); } int main() { std::vector<int> data = {1, 2, 3, 4, 5, 4, 3, 2, 1}; std::sort(data.begin(), data.end()); duplicateRemoval(data); // 输出去重后的数据 for (auto val : data) { std::cout << val << " "; } std::cout << std::endl; return 0; }
Summary: In C big data development, data deduplication is a common problem. This article introduces three methods for efficiently handling big data deduplication problems and provides corresponding code examples. Choosing the appropriate method according to the actual situation can greatly improve the speed and efficiency of data processing.
The above is the detailed content of How to deal with the data deduplication problem in C++ big data development?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.
