


In C++, represent a number as the smallest possible sum of pseudo-binary numbers
This tutorial will discuss representing a number as the smallest sum of pseudo-binary numbers. A pseudo-binary number is a number composed of the binary digits 0 and 1. Examples of pseudo-binary numbers are 00, 11, 10, 100, 111, 1011, etc.
Here are some examples of numbers represented as sums of pseudo-binary numbers.
Input : 23 Output : 11 + 11 + 1 Explanation : 23 = 11 + 11 + 1, sum of pseudo-binary numbers(11, 11, 1) is 23. Input : 50 Output : 10 + 10 + 10 + 10 + 10
Methods to find the solution
The following is one of the best ways to find the smallest pseudo-binary number that represents N.
Take a number X and update the number of digits in X to 1 or 0 according to each digit of the number N.
Check each digit of N:
If it is 0, set that bit of X to 0.
If it is not 0, set the bit of X to 1.
Assuming N = 32, X will become 11.
# Then X will become a pseudo-binary number.
Now subtract X from N and repeat step 1 until N becomes zero.
Example
C code for the above method
#include<iostream> using namespace std; int main(){ int N = 51; // find a pseudo-binary number until N becomes 0. cout << "pseudo-binary representation of " << N << " is: "; while (N > 0){ // finding X which contains 0's and 1's according to N. int temp = N; int X = 0, bit = 1; // checking each place of N for zero or non-zero. while (temp!=0){ int last_dig = temp % 10; temp = temp / 10; if (last_dig != 0) X += bit; bit *= 10; } // printing one pseudo-binary number. cout << X << " "; // Updating N by subtracting with X. N = N - X; } return 0; }
Output
pseudo-binary representation of 51 is: 11 10 10 10 10
Understanding the code
An outer while loop is used to get N and select the number at each position to find X.
We do this by updating the value of N into the temp variable and using an inner loop to check each position of the temp variable and update that position of the variable X.
Print the value of X because it is a pseudo-binary number.
We update N by subtracting X from N and entering the outer loop again until N becomes 0.
Conclusion
In this tutorial, we discussed how to represent a number as the smallest possible sum of pseudo-binary numbers. We discussed ways to find all pseudo-binary numbers. We also discussed that the same C code we can write in other programming languages like C, Java, Python, etc. Hope you find this tutorial helpful.
The above is the detailed content of In C++, represent a number as the smallest possible sum of pseudo-binary numbers. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



We all know numbers that are not the square of any number, such as 2, 3, 5, 7, 8, etc. There are N non-square numbers, and it is impossible to know every number. So, in this article, we will explain everything about squareless or non-square numbers and ways to find the Nth non-square number in C++. Nth non-square number If a number is the square of an integer, then the number is called a perfect square. Some examples of perfect square numbers are -1issquareof14issquareof29issquareof316issquareof425issquareof5 If a number is not the square of any integer, then the number is called non-square. For example, the first 15 non-square numbers are -2,3,5,6,

In this article, we will learn about the reversal algorithm to rotate a given array to the right by k elements, for example −Input:arr[]={4,6,2,6,43,7,3,7},k= 4Output:{43,7,3,7,4,6,2,6}Explanation:Rotatingeachelementofarrayby4-elementtotherightgives{43,7,3,7,4,6,2,6}.Input:arr[]={8 ,5,8,2,1,4,9,3},k=3Output:{4,9,3,8,5,8,2,1} Find the solution

A circle is a closed figure. All points on a circle are equidistant from a point inside the circle. The center point is called the center of the circle. The distance from a point to the center of a circle is called the radius. Area is a quantitative representation of the span of dimensions of a closed figure. The area of a circle is the area enclosed within the dimensions of the circle. The formula to calculate the area of a circle, Area=π*r*r To calculate the area, we give the radius of the circle as input, we will use the formula to calculate the area, algorithm STEP1: Takeradiusasinputfromtheuserusingstdinput.STEP2: Calculatetheareaofcircleusing, area=(

We need proper knowledge to create several unique pairs in array syntax of C++. While finding the number of unique pairs, we count all the unique pairs in the given array i.e. all possible pairs can be formed where each pair should be unique. For example -Input:array[]={5,5,9}Output:4Explanation:Thenumberoffalluniquepairsare(5,5),(5,9),(9,5)and(9,9).Input:array[]= {5,4,3,2,2}Output:16 Ways to Find Solution There are two ways to solve this problem, they are −

In this article, we will use C++ to solve the problem of finding the number of subarrays whose maximum and minimum values are the same. The following is an example of the problem −Input:array={2,3,6,6,2,4,4,4}Output:12Explanation:{2},{3},{6},{6},{2 },{4},{4},{4},{6,6},{4,4},{4,4}and{4,4,4}arethesubarrayswhichcanbeformedwithmaximumandminimumelementsame.Input:array={3,3, 1,5,

In this article we will explain ways to find reflexive relations on a set. In this problem, we are given a number n, and a set of n natural numbers, and we must determine the number of reflexive relations. Reflexive relation - A relation R is said to be a reflexive relation on the set A if for every 'a' in the set A, (a, a) belongs to the relation R. For example -Input:x=1Output:1Explanation:set={1},reflexiverelationsonA*A:{{1}}Input:x=2Output:4Explanation:set={1,2},reflexiverelationsonA*

In this problem, we are given a pointer to the head of the linked list and an integer k. In a group of size k, we need to reverse the linked list. For example -Input:1<->2<->3<->4<->5(doublylinkedlist),k=3Output:3<->2<->1<->5<->4 looking for solutions Method In this problem, we will formulate a recursive algorithm to solve this problem. In this method we will use recursion and solve the problem using recursion. Example#include<iostream&

In the given problem, we have an array and we need to rotate the array by d elements using inversion algorithm like −Input:arr[]=[1,2,3,4,5,6,7], d=2Output:arr[]=[3,4,5,6,7,1,2]Explanation:Asyoucanseewehavetorotatethisarraybyd=2butourmaintaskistoachievethisbyusingareversaltechnique. We performed some inversion technique calculations on the rotation of the array and concluded: First, we reverse
