Home > Backend Development > C++ > C++ program to count the number of coloring schemes that satisfy two conditions

C++ program to count the number of coloring schemes that satisfy two conditions

PHPz
Release: 2023-08-26 08:25:06
forward
1345 people have browsed it

C++ program to count the number of coloring schemes that satisfy two conditions

Suppose we have three numbers N, M and K. Consider there are N blocks, arranged in a row. We consider the following two ways of coloring. Two blocks are colored differently if and only if the blocks in the following two ways are colored in different colors: -

  • For each block, use one of M colors to color (not necessarily using all colors)

  • There may be at most K pairs of adjacent blocks painted with the same color

If the answer is too large, return the result modulo 998244353.

So if the input is N = 3; M = 2; K = 1, the output will be 6 because we can color in the following different formats: 112, 121, 122, 211, 212 and 221.

Steps

To solve this problem, we will follow the following steps:

maxm := 2^6 + 5
p := 998244353
Define two large arrays fac and inv or size maxm
Define a function ppow(), this will take a, b, p,
ans := 1 mod p
a := a mod p
while b is non-zero, do:
   if b is odd, then:
      ans := ans * a mod p
   a := a * a mod p
   b := b/2
return ans
Define a function C(), this will take n, m,
if m < 0 or m > n, then:
   return 0
return fac[n] * inv[m] mod p * inv[n - m] mod p
From the main method, do the following
fac[0] := 1
for initialize i := 1, when i < maxm, update (increase i by 1), do:
   fac[i] := fac[i - 1] * i mod p
inv[maxm - 1] := ppow(fac[maxm - 1], p - 2, p)
for initialize i := maxm - 2, when i >= 0, update (decrease i by 1), do:
   inv[i] := (i + 1) * inv[i + 1] mod p
ans := 0
for initialize i := 0, when i <= k, update (increase i by 1), do:
   t := C(n - 1, i)
   tt := m * ppow(m - 1, n - i - 1, p)
   ans := (ans + t * tt mod p) mod p
return ans
Copy after login

Example

Let us see the implementation below for better understanding −

#include <bits/stdc++.h>
using namespace std;

const long maxm = 2e6 + 5;
const long p = 998244353;
long fac[maxm], inv[maxm];

long ppow(long a, long b, long p){
   long ans = 1 % p;
   a %= p;
   while (b){
      if (b & 1)
         ans = ans * a % p;
      a = a * a % p;
      b >>= 1;
   }
   return ans;
}
long C(long n, long m){
   if (m < 0 || m > n)
      return 0;
   return fac[n] * inv[m] % p * inv[n - m] % p;
}
long solve(long n, long m, long k){
   fac[0] = 1;
   for (long i = 1; i < maxm; i++)
      fac[i] = fac[i - 1] * i % p;
   inv[maxm - 1] = ppow(fac[maxm - 1], p - 2, p);
   for (long i = maxm - 2; i >= 0; i--)
      inv[i] = (i + 1) * inv[i + 1] % p;
   long ans = 0;
   for (long i = 0; i <= k; i++){
      long t = C(n - 1, i);
      long tt = m * ppow(m - 1, n - i - 1, p) % p;
      ans = (ans + t * tt % p) % p;
   }
   return ans;
}
int main(){
   int N = 3;
   int M = 2;
   int K = 1;
   cout << solve(N, M, K) << endl;
}
Copy after login

Input

3, 2, 1
Copy after login

Output

6
Copy after login

The above is the detailed content of C++ program to count the number of coloring schemes that satisfy two conditions. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:tutorialspoint.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template