Home Backend Development Python Tutorial How to use Python to perform style transfer on images

How to use Python to perform style transfer on images

Aug 26, 2023 pm 02:27 PM
python picture style transfer

How to use Python to perform style transfer on images

How to use Python to perform style transfer on pictures

Introduction:
Style transfer is an interesting and challenging task in the field of computer vision, which can The content of one picture is combined with the style of another picture to create a unique artistic effect, which is widely used in image processing, design, entertainment and other fields. This article will introduce how to use the Python programming language, combined with deep learning algorithms, to achieve style transfer of images.

Step 1: Import the required libraries
First, we need to import some necessary Python libraries, including TensorFlow, Keras, NumPy and Matplotlib. Execute the following code:

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
Copy after login

Step 2: Load the pre-trained model
In style transfer, we can use a pre-trained convolutional neural network model, such as VGG19. This model performs well on image recognition tasks and is also widely used in style transfer tasks. Execute the following code:

vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
Copy after login

Step 3: Define content loss
Content loss is used to measure the difference in content between two images. We can use the middle layer of the VGG model to extract the content features of the image. Specifically, we can select certain convolutional layers of the VGG model as content layers and compare the feature representations of the input image and the target image on these layers. Execute the following code:

content_layers = ['block5_conv2']
content_extractor = keras.Model(inputs=vgg.input, outputs=[vgg.get_layer(name).output for name in content_layers])
Copy after login

Step 4: Define style loss
Style loss is used to measure the difference in style between two images. We can use the Gram matrix to represent the correlation between different channels in a picture, and then measure the characteristics of the picture in terms of texture, color, etc. Execute the following code:

style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
style_extractor = keras.Model(inputs=vgg.input, outputs=[vgg.get_layer(name).output for name in style_layers])

def gram_matrix(input_tensor):
    channels = int(input_tensor.shape[-1])
    a = tf.reshape(input_tensor, [-1, channels])
    n = tf.shape(a)[0]
    gram = tf.matmul(a, a, transpose_a=True)
    return gram / tf.cast(n, tf.float32)
Copy after login

Step 5: Define the total variation loss
The total variation loss is used to keep the synthetic image smooth. By summing the difference between each pixel of the composite image and its neighboring pixels, we can reduce noise and discontinuous edges. Execute the following code:

def total_variation_loss(image):
    x = tf.image.image_gradients(image)
    return tf.reduce_sum(tf.abs(x[0])) + tf.reduce_sum(tf.abs(x[1]))
Copy after login

Step 6: Define the objective function
We combine content loss, style loss and total variation loss to form a comprehensive objective function. The objective function will be used to minimize the difference between the content and style of the image and generate a composite image that satisfies the constraints. Execute the following code:

def compute_loss(image, content_features, style_features):
    content_output = content_extractor(image)
    style_output = style_extractor(image)
    content_loss = tf.reduce_mean(tf.square(content_output - content_features))
    style_loss = tf.add_n([tf.reduce_mean(tf.square(style_output[i] - style_features[i])) for i in range(len(style_output))])
    content_loss *= content_weight
    style_loss *= style_weight
    tv_loss = total_variation_loss(image) * total_variation_weight
    loss = content_loss + style_loss + tv_loss
    return loss

@tf.function()
def train_step(image, content_features, style_features, optimizer):
    with tf.GradientTape() as tape:
        loss = compute_loss(image, content_features, style_features)
    gradients = tape.gradient(loss, image)
    optimizer.apply_gradients([(gradients, image)])
    image.assign(tf.clip_by_value(image, 0.0, 1.0))
Copy after login

Step 7: Perform style transfer
After completing the definition of the model, we can use a custom training function to iteratively optimize the synthesized image so that it is consistent in content and style. The target images are as similar as possible. Execute the following code:

def style_transfer(content_path, style_path, num_iteration=1000, content_weight=1e3, style_weight=1e-2, total_variation_weight=30):
    content_image = load_image(content_path)
    style_image = load_image(style_path)
    content_features = content_extractor(content_image)
    style_features = style_extractor(style_image)
    opt = keras.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)
    image = tf.Variable(content_image)
    start_time = time.time()
    for i in range(num_iteration):
        train_step(image, content_features, style_features, opt)
        if i % 100 == 0:
            elapsed_time = time.time() - start_time
            print('Iteration: %d, Time: %.2fs' % (i, elapsed_time))
            plt.imshow(image.read_value()[0])
            plt.axis('off')
            plt.show()
    image = image.read_value()[0]
    return image
Copy after login

Step 8: Perform style migration
Finally, we select a content image and a style image, and then call the style_transfer() function to perform style migration. Execute the following code:

content_path = 'content.jpg'
style_path = 'style.jpg'
output_image = style_transfer(content_path, style_path)
plt.imshow(output_image)
plt.axis('off')
plt.show()
Copy after login

Conclusion:
This article introduces how to use the Python programming language, combined with deep learning algorithms, to achieve style transfer of pictures. By loading the pre-trained model, defining content loss, style loss and total variation loss, and combining it with a custom training function, we can synthesize a content image and a style image into a new image that combines their characteristics. Through continuous iterative optimization, we can obtain the final composite image that satisfies the given constraints. It is hoped that readers can understand the basic principles and implementation methods of style transfer through the introduction of this article, and further explore and apply the potential of this technology in fields such as image processing and artistic creation.

The above is the detailed content of How to use Python to perform style transfer on images. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Google AI announces Gemini 1.5 Pro and Gemma 2 for developers Google AI announces Gemini 1.5 Pro and Gemma 2 for developers Jul 01, 2024 am 07:22 AM

Google AI has started to provide developers with access to extended context windows and cost-saving features, starting with the Gemini 1.5 Pro large language model (LLM). Previously available through a waitlist, the full 2 million token context windo

How to download deepseek Xiaomi How to download deepseek Xiaomi Feb 19, 2025 pm 05:27 PM

How to download DeepSeek Xiaomi? Search for "DeepSeek" in the Xiaomi App Store. If it is not found, continue to step 2. Identify your needs (search files, data analysis), and find the corresponding tools (such as file managers, data analysis software) that include DeepSeek functions.

How do you ask him deepseek How do you ask him deepseek Feb 19, 2025 pm 04:42 PM

The key to using DeepSeek effectively is to ask questions clearly: express the questions directly and specifically. Provide specific details and background information. For complex inquiries, multiple angles and refute opinions are included. Focus on specific aspects, such as performance bottlenecks in code. Keep a critical thinking about the answers you get and make judgments based on your expertise.

How to search deepseek How to search deepseek Feb 19, 2025 pm 05:18 PM

Just use the search function that comes with DeepSeek. Its powerful semantic analysis algorithm can accurately understand the search intention and provide relevant information. However, for searches that are unpopular, latest information or problems that need to be considered, it is necessary to adjust keywords or use more specific descriptions, combine them with other real-time information sources, and understand that DeepSeek is just a tool that requires active, clear and refined search strategies.

How to program deepseek How to program deepseek Feb 19, 2025 pm 05:36 PM

DeepSeek is not a programming language, but a deep search concept. Implementing DeepSeek requires selection based on existing languages. For different application scenarios, it is necessary to choose the appropriate language and algorithms, and combine machine learning technology. Code quality, maintainability, and testing are crucial. Only by choosing the right programming language, algorithms and tools according to your needs and writing high-quality code can DeepSeek be successfully implemented.

How to use deepseek to settle accounts How to use deepseek to settle accounts Feb 19, 2025 pm 04:36 PM

Question: Is DeepSeek available for accounting? Answer: No, it is a data mining and analysis tool that can be used to analyze financial data, but it does not have the accounting record and report generation functions of accounting software. Using DeepSeek to analyze financial data requires writing code to process data with knowledge of data structures, algorithms, and DeepSeek APIs to consider potential problems (e.g. programming knowledge, learning curves, data quality)

The Key to Coding: Unlocking the Power of Python for Beginners The Key to Coding: Unlocking the Power of Python for Beginners Oct 11, 2024 pm 12:17 PM

Python is an ideal programming introduction language for beginners through its ease of learning and powerful features. Its basics include: Variables: used to store data (numbers, strings, lists, etc.). Data type: Defines the type of data in the variable (integer, floating point, etc.). Operators: used for mathematical operations and comparisons. Control flow: Control the flow of code execution (conditional statements, loops).

Problem-Solving with Python: Unlock Powerful Solutions as a Beginner Coder Problem-Solving with Python: Unlock Powerful Solutions as a Beginner Coder Oct 11, 2024 pm 08:58 PM

Pythonempowersbeginnersinproblem-solving.Itsuser-friendlysyntax,extensivelibrary,andfeaturessuchasvariables,conditionalstatements,andloopsenableefficientcodedevelopment.Frommanagingdatatocontrollingprogramflowandperformingrepetitivetasks,Pythonprovid

See all articles