Table of Contents
Working Principle
Algorithm
A program that uses iterative calls to implement binary search
Example
Output
Uses recursive calls to implement binary search Program
Home Backend Development C++ Implementation of binary search (recursive and iterative) in C program

Implementation of binary search (recursive and iterative) in C program

Aug 26, 2023 pm 02:37 PM
recursion Iterate binary search

Implementation of binary search (recursive and iterative) in C program

Binary search is a search algorithm used to find the position of an element (target value) in a sorted array. The array should be sorted before applying binary search.

Binary search is also called logarithmic search, binary search, and semi-interval search.

Working Principle

The binary search algorithm works by comparing the element to be searched with the middle element of the array, and performs the required process based on the result of this comparison.

Case 1 - element = middle value, find the element and return the index.

Case 2 - element > middle value, searches for an element in the subarray indexed from middle 1 to n.

Case 3 - element

Algorithm

Initial parameter value, end value

Step 1 : Find the middle element of array. using ,
middle = initial_value + end_value / 2 ;
Step 2 : If middle = element, return ‘element found’ and index.
Step 3 : if middle > element, call the function with end_value = middle - 1 .
Step 4 : if middle < element, call the function with start_value = middle + 1 .
Step 5 : exit.
Copy after login

The implementation function of the binary search algorithm uses repeated calling functions. This call can be of two types:

  • Iteration
  • Recursion

Iteration callis looping the same piece of code multiple times.

Recursive call is to call the same function repeatedly.

Example

Demonstration

#include <stdio.h>
int iterativeBinarySearch(int array[], int start_index, int end_index, int element){
   while (start_index <= end_index){
      int middle = start_index + (end_index- start_index )/2;
      if (array[middle] == element)
         return middle;
      if (array[middle] < element)
         start_index = middle + 1;
      else
         end_index = middle - 1;
   }
   return -1;
}
int main(void){
   int array[] = {1, 4, 7, 9, 16, 56, 70};
   int n = 7;
   int element = 16;
   int found_index = iterativeBinarySearch(array, 0, n-1, element);
   if(found_index == -1 ) {
      printf("Element not found in the array ");
   }
   else {
      printf("Element found at index : %d",found_index);
   }
   return 0;
}
Copy after login

Output

Element found at index : 4
Copy after login

Uses recursive calls to implement binary search Program

Example

Online demonstration

#include <stdio.h>
int recursiveBinarySearch(int array[], int start_index, int end_index, int element){
   if (end_index >= start_index){
      int middle = start_index + (end_index - start_index )/2;
      if (array[middle] == element)
         return middle;
      if (array[middle] > element)
         return recursiveBinarySearch(array, start_index, middle-1, element);
      return recursiveBinarySearch(array, middle+1, end_index, element);
   }
   return -1;
}
int main(void){
   int array[] = {1, 4, 7, 9, 16, 56, 70};
   int n = 7;
   int element = 9;
   int found_index = recursiveBinarySearch(array, 0, n-1, element);
   if(found_index == -1 ) {
      printf("Element not found in the array ");
   }
   else {
      printf("Element found at index : %d",found_index);
   }
   return 0;
}
Copy after login

Output

Element found at index : 3
Copy after login

The above is the detailed content of Implementation of binary search (recursive and iterative) in C program. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Recursive implementation of C++ functions: Is there a limit to recursion depth? Recursive implementation of C++ functions: Is there a limit to recursion depth? Apr 23, 2024 am 09:30 AM

The recursion depth of C++ functions is limited, and exceeding this limit will result in a stack overflow error. The limit value varies between systems and compilers, but is usually between 1,000 and 10,000. Solutions include: 1. Tail recursion optimization; 2. Tail call; 3. Iterative implementation.

Do C++ lambda expressions support recursion? Do C++ lambda expressions support recursion? Apr 17, 2024 pm 09:06 PM

Yes, C++ Lambda expressions can support recursion by using std::function: Use std::function to capture a reference to a Lambda expression. With a captured reference, a Lambda expression can call itself recursively.

Count the number of occurrences of a substring recursively in Java Count the number of occurrences of a substring recursively in Java Sep 17, 2023 pm 07:49 PM

Given two strings str_1 and str_2. The goal is to count the number of occurrences of substring str2 in string str1 using a recursive procedure. A recursive function is a function that calls itself within its definition. If str1 is "Iknowthatyouknowthatiknow" and str2 is "know" the number of occurrences is -3. Let us understand through examples. For example, input str1="TPisTPareTPamTP", str2="TP"; output Countofoccurrencesofasubstringrecursi

Recursive implementation of C++ functions: Comparative analysis of recursive and non-recursive algorithms? Recursive implementation of C++ functions: Comparative analysis of recursive and non-recursive algorithms? Apr 22, 2024 pm 03:18 PM

The recursive algorithm solves structured problems through function self-calling. The advantage is that it is simple and easy to understand, but the disadvantage is that it is less efficient and may cause stack overflow. The non-recursive algorithm avoids recursion by explicitly managing the stack data structure. The advantage is that it is more efficient and avoids the stack. Overflow, the disadvantage is that the code may be more complex. The choice of recursive or non-recursive depends on the problem and the specific constraints of the implementation.

Recursive program to find minimum and maximum elements of array in C++ Recursive program to find minimum and maximum elements of array in C++ Aug 31, 2023 pm 07:37 PM

We take the integer array Arr[] as input. The goal is to find the largest and smallest elements in an array using a recursive method. Since we are using recursion, we will iterate through the entire array until we reach length = 1 and then return A[0], which forms the base case. Otherwise, the current element is compared to the current minimum or maximum value and its value is updated recursively for subsequent elements. Let’s look at various input and output scenarios for this −Input −Arr={12,67,99,76,32}; Output −Maximum value in the array: 99 Explanation &mi

Detailed explanation of C++ function recursion: application of recursion in string processing Detailed explanation of C++ function recursion: application of recursion in string processing Apr 30, 2024 am 10:30 AM

A recursive function is a technique that calls itself repeatedly to solve a problem in string processing. It requires a termination condition to prevent infinite recursion. Recursion is widely used in operations such as string reversal and palindrome checking.

A beginner's guide to C++ recursion: Building foundations and developing intuition A beginner's guide to C++ recursion: Building foundations and developing intuition May 01, 2024 pm 05:36 PM

Recursion is a powerful technique that allows a function to call itself to solve a problem. In C++, a recursive function consists of two key elements: the base case (which determines when the recursion stops) and the recursive call (which breaks the problem into smaller sub-problems ). By understanding the basics and practicing practical examples such as factorial calculations, Fibonacci sequences, and binary tree traversals, you can build your recursive intuition and use it in your code with confidence.

C++ Recursion Advanced: Understanding Tail Recursion Optimization and Its Application C++ Recursion Advanced: Understanding Tail Recursion Optimization and Its Application Apr 30, 2024 am 10:45 AM

Tail recursion optimization (TRO) improves the efficiency of certain recursive calls. It converts tail-recursive calls into jump instructions and saves the context state in registers instead of on the stack, thereby eliminating extra calls and return operations to the stack and improving algorithm efficiency. Using TRO, we can optimize tail recursive functions (such as factorial calculations). By replacing the tail recursive call with a goto statement, the compiler will convert the goto jump into TRO and optimize the execution of the recursive algorithm.

See all articles