How to use C for efficient concurrent programming?
Introduction:
With the development of computer systems, the popularization of multi-core technology, and the increase in demand for high concurrent processing, concurrent programming has become more and more important. C is a powerful programming language with a rich set of concurrent programming tools and libraries. This article explains how to use C for efficient concurrent programming and provides some sample code.
1. Threads and thread management:
<thread></thread>
header file, through std The ::thread
class makes it easy to create new threads. The following is sample code to create a thread: #include <iostream> #include <thread> void myFunction() { std::cout << "This is a new thread." << std::endl; } int main() { std::thread t(myFunction); // 创建一个新线程 t.join(); // 主线程等待新线程执行完毕 return 0; }
std::thread
Instances of classes can join()
Or detach()
, when calling join()
, the main thread will wait for the thread to complete execution, while detach()
will let the new thread in the background run. The following is a sample code for thread management: #include <iostream> #include <thread> void myFunction() { std::cout << "This is a new thread." << std::endl; } int main() { std::thread t(myFunction); // 创建一个新线程 t.detach(); // 将线程设置为后台运行 // 主线程可以继续执行其他任务 return 0; }
2. Mutex lock and condition variable:
#include <iostream> #include <thread> #include <mutex> std::mutex mtx; // 创建互斥锁 void myFunction() { mtx.lock(); // 加锁 std::cout << "This is a critical section." << std::endl; mtx.unlock(); // 解锁 } int main() { std::thread t1(myFunction); std::thread t2(myFunction); t1.join(); t2.join(); return 0; }
#include <iostream> #include <thread> #include <mutex> #include <condition_variable> std::mutex mtx; // 创建互斥锁 std::condition_variable cv; // 创建条件变量 bool ready = false; // 条件 void myFunction() { std::unique_lock<std::mutex> ul(mtx); cv.wait(ul, []{ return ready; }); // 阻塞线程直到满足条件 std::cout << "This is a new thread." << std::endl; } int main() { std::thread t(myFunction); { std::lock_guard<std::mutex> lg(mtx); ready = true; } cv.notify_one(); // 唤醒等待条件的线程 t.join(); return 0; }
3. Concurrent containers:
C 11 introduces multiple concurrent containers to solve the problem of multi-threaded access to shared data, including std ::vector
, std::map
, std::queue
, etc. The following is sample code using a concurrent container:
#include <iostream> #include <thread> #include <vector> std::vector<int> sharedVector; // 共享容器 std::mutex mtx; // 创建互斥锁 void producer() { for (int i = 0; i < 10; ++i) { std::lock_guard<std::mutex> lg(mtx); sharedVector.push_back(i); } } void consumer() { for (int i = 0; i < 10; ++i) { std::lock_guard<std::mutex> lg(mtx); if (!sharedVector.empty()) { std::cout << sharedVector.back() << std::endl; sharedVector.pop_back(); } } } int main() { std::thread t1(producer); std::thread t2(consumer); t1.join(); t2.join(); return 0; }
Conclusion:
Efficient concurrent programming in C is an important technical requirement. By having a deep understanding of C's threads, mutexes, condition variables, and concurrent containers, we can better handle data sharing and synchronization issues in multi-threaded programming, and improve program performance and efficiency.
Reference:
<thread></thread>
:https://www.cplusplus.com/reference/thread/<mutex></mutex>
:https://www.cplusplus.com/reference/mutex/<condition_variable></condition_variable>
: https://www.cplusplus.com/reference/condition_variable/The above is the detailed content of How to use C++ for efficient concurrent programming?. For more information, please follow other related articles on the PHP Chinese website!