


C++ data conversion and encoding and decoding function implementation skills in embedded system development
C Data conversion and encoding and decoding function implementation skills in embedded system development
In embedded system development, data conversion and encoding and decoding are very important functions one. Whether it is converting data from one format to another, or encoding and decoding data for transmission and storage, effective techniques and algorithms are required to achieve it. As a programming language widely used in embedded system development, C provides a wealth of libraries and tools to support the implementation of data conversion and encoding and decoding functions.
Below, we will introduce some common techniques for implementing data conversion and encoding and decoding in C, and attach corresponding code examples.
1. Data type conversion
In embedded system development, it is often necessary to convert different data types. For example, convert integer to string, convert string to integer, convert float to integer, etc. C provides libraries to support these conversion operations.
- Conversion of integers and strings
To convert integers to strings, you can use the ostringstream class. Here is a sample code:
#include <iostream> #include <sstream> int main() { int num = 123; std::ostringstream oss; oss << num; std::string str = oss.str(); std::cout << "Integer to string: " << str << std::endl; return 0; }
To convert a string to an integer, you can use the istringstream class. The following is a sample code:
#include <iostream> #include <string> #include <sstream> int main() { std::string str = "123"; std::istringstream iss(str); int num; iss >> num; std::cout << "String to integer: " << num << std::endl; return 0; }
- Conversion of floating point numbers and integers
To convert floating point numbers to integers, you can use the type cast operator. Here is a sample code:
#include <iostream> int main() { double num = 3.14; int integer = static_cast<int>(num); std::cout << "Double to integer: " << integer << std::endl; return 0; }
To convert an integer to a floating point number, you can use the type cast operator. The following is a sample code:
#include <iostream> int main() { int integer = 3; double num = static_cast<double>(integer); std::cout << "Integer to double: " << num << std::endl; return 0; }
2. Encoding and decoding
In embedded systems, it is often necessary to encode and decode data for transmission and storage. For example, compress and decompress data, encrypt and decrypt data, and so on. C provides some libraries to support these encoding and decoding operations.
- Data compression and decompression
In C, you can use the zlib library to achieve data compression and decompression. The following is a sample code:
#include <iostream> #include <string> #include <cstring> #include <zlib.h> std::string compress(const std::string& str) { z_stream zs; memset(&zs, 0, sizeof(zs)); if (deflateInit(&zs, Z_DEFAULT_COMPRESSION) != Z_OK) { return ""; } zs.next_in = (Bytef*)(str.c_str()); zs.avail_in = str.size() + 1; char outbuffer[32768]; std::string outstring; do { zs.next_out = reinterpret_cast<Bytef*>(outbuffer); zs.avail_out = sizeof(outbuffer); if (deflate(&zs, Z_FINISH) == Z_STREAM_ERROR) { deflateEnd(&zs); return ""; } outstring.append(outbuffer, sizeof(outbuffer) - zs.avail_out); } while (zs.avail_out == 0); deflateEnd(&zs); return outstring; } std::string decompress(const std::string& str) { z_stream zs; memset(&zs, 0, sizeof(zs)); if (inflateInit(&zs) != Z_OK) { return ""; } zs.next_in = (Bytef*)(str.c_str()); zs.avail_in = str.size(); char outbuffer[32768]; std::string outstring; do { zs.next_out = reinterpret_cast<Bytef*>(outbuffer); zs.avail_out = sizeof(outbuffer); if (inflate(&zs, 0) == Z_STREAM_ERROR) { inflateEnd(&zs); return ""; } outstring.append(outbuffer, sizeof(outbuffer) - zs.avail_out); } while (zs.avail_out == 0); inflateEnd(&zs); return outstring; } int main() { std::string str = "Hello, World!"; // 压缩 std::string compressed = compress(str); std::cout << "Compressed: " << compressed << std::endl; // 解压缩 std::string decompressed = decompress(compressed); std::cout << "Decompressed: " << decompressed << std::endl; return 0; }
- Data encryption and decryption
In C, you can use the openssl library to implement data encryption and decryption. The following is a sample code:
#include <iostream> #include <string> #include <openssl/aes.h> #include <openssl/rand.h> std::string encrypt(const std::string& key, const std::string& plain) { std::string encrypted; AES_KEY aesKey; if (AES_set_encrypt_key(reinterpret_cast<const unsigned char*>(key.c_str()), 128, &aesKey) < 0) { return ""; } int len = plain.length(); if (len % 16 != 0) { len = (len / 16 + 1) * 16; } unsigned char outbuffer[1024]; memset(outbuffer, 0, sizeof(outbuffer)); AES_encrypt(reinterpret_cast<const unsigned char*>(plain.c_str()), outbuffer, &aesKey); encrypted.assign(reinterpret_cast<char*>(outbuffer), len); return encrypted; } std::string decrypt(const std::string& key, const std::string& encrypted) { std::string decrypted; AES_KEY aesKey; if (AES_set_decrypt_key(reinterpret_cast<const unsigned char*>(key.c_str()), 128, &aesKey) < 0) { return ""; } unsigned char outbuffer[1024]; memset(outbuffer, 0, sizeof(outbuffer)); AES_decrypt(reinterpret_cast<const unsigned char*>(encrypted.c_str()), outbuffer, &aesKey); decrypted.assign(reinterpret_cast<char*>(outbuffer)); return decrypted; } int main() { std::string key = "1234567890123456"; std::string plain = "Hello, World!"; // 加密 std::string encrypted = encrypt(key, plain); std::cout << "Encrypted: " << encrypted << std::endl; // 解密 std::string decrypted = decrypt(key, encrypted); std::cout << "Decrypted: " << decrypted << std::endl; return 0; }
This article introduces some common techniques of data conversion and encoding and decoding in C in embedded system development, and provides relevant code examples. I hope it will be helpful to developers who are engaged in embedded system development.
The above is the detailed content of C++ data conversion and encoding and decoding function implementation skills in embedded system development. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.
