Home Backend Development C++ C++ data conversion and encoding and decoding function implementation skills in embedded system development

C++ data conversion and encoding and decoding function implementation skills in embedded system development

Aug 26, 2023 pm 05:24 PM
data conversion encoding and decoding embedded system development

C++ data conversion and encoding and decoding function implementation skills in embedded system development

C Data conversion and encoding and decoding function implementation skills in embedded system development

In embedded system development, data conversion and encoding and decoding are very important functions one. Whether it is converting data from one format to another, or encoding and decoding data for transmission and storage, effective techniques and algorithms are required to achieve it. As a programming language widely used in embedded system development, C provides a wealth of libraries and tools to support the implementation of data conversion and encoding and decoding functions.

Below, we will introduce some common techniques for implementing data conversion and encoding and decoding in C, and attach corresponding code examples.

1. Data type conversion

In embedded system development, it is often necessary to convert different data types. For example, convert integer to string, convert string to integer, convert float to integer, etc. C provides libraries to support these conversion operations.

  1. Conversion of integers and strings

To convert integers to strings, you can use the ostringstream class. Here is a sample code:

#include <iostream>
#include <sstream>

int main() {
    int num = 123;
    std::ostringstream oss;
    oss << num;
    std::string str = oss.str();
    std::cout << "Integer to string: " << str << std::endl;
    
    return 0;
}
Copy after login

To convert a string to an integer, you can use the istringstream class. The following is a sample code:

#include <iostream>
#include <string>
#include <sstream>

int main() {
    std::string str = "123";
    std::istringstream iss(str);
    int num;
    iss >> num;
    std::cout << "String to integer: " << num << std::endl;

    return 0;
}
Copy after login
  1. Conversion of floating point numbers and integers

To convert floating point numbers to integers, you can use the type cast operator. Here is a sample code:

#include <iostream>

int main() {
    double num = 3.14;
    int integer = static_cast<int>(num);
    std::cout << "Double to integer: " << integer << std::endl;

    return 0;
}
Copy after login

To convert an integer to a floating point number, you can use the type cast operator. The following is a sample code:

#include <iostream>

int main() {
    int integer = 3;
    double num = static_cast<double>(integer);
    std::cout << "Integer to double: " << num << std::endl;

    return 0;
}
Copy after login

2. Encoding and decoding

In embedded systems, it is often necessary to encode and decode data for transmission and storage. For example, compress and decompress data, encrypt and decrypt data, and so on. C provides some libraries to support these encoding and decoding operations.

  1. Data compression and decompression

In C, you can use the zlib library to achieve data compression and decompression. The following is a sample code:

#include <iostream>
#include <string>
#include <cstring>
#include <zlib.h>

std::string compress(const std::string& str) {
    z_stream zs;
    memset(&zs, 0, sizeof(zs));
    
    if (deflateInit(&zs, Z_DEFAULT_COMPRESSION) != Z_OK) {
        return "";
    }
    
    zs.next_in = (Bytef*)(str.c_str());
    zs.avail_in = str.size() + 1;
    
    char outbuffer[32768];
    std::string outstring;
    
    do {
        zs.next_out = reinterpret_cast<Bytef*>(outbuffer);
        zs.avail_out = sizeof(outbuffer);
        
        if (deflate(&zs, Z_FINISH) == Z_STREAM_ERROR) {
            deflateEnd(&zs);
            return "";
        }
        
        outstring.append(outbuffer, sizeof(outbuffer) - zs.avail_out);
        
    } while (zs.avail_out == 0);
    
    deflateEnd(&zs);
    
    return outstring;
}

std::string decompress(const std::string& str) {
    z_stream zs;
    memset(&zs, 0, sizeof(zs));
    
    if (inflateInit(&zs) != Z_OK) {
        return "";
    }
    
    zs.next_in = (Bytef*)(str.c_str());
    zs.avail_in = str.size();
    
    char outbuffer[32768];
    std::string outstring;
    
    do {
        zs.next_out = reinterpret_cast<Bytef*>(outbuffer);
        zs.avail_out = sizeof(outbuffer);
        
        if (inflate(&zs, 0) == Z_STREAM_ERROR) {
            inflateEnd(&zs);
            return "";
        }
        
        outstring.append(outbuffer, sizeof(outbuffer) - zs.avail_out);
        
    } while (zs.avail_out == 0);
    
    inflateEnd(&zs);
    
    return outstring;
}

int main() {
    std::string str = "Hello, World!";
    
    // 压缩
    std::string compressed = compress(str);
    std::cout << "Compressed: " << compressed << std::endl;
    
    // 解压缩
    std::string decompressed = decompress(compressed);
    std::cout << "Decompressed: " << decompressed << std::endl;
    
    return 0;
}
Copy after login
  1. Data encryption and decryption

In C, you can use the openssl library to implement data encryption and decryption. The following is a sample code:

#include <iostream>
#include <string>
#include <openssl/aes.h>
#include <openssl/rand.h>

std::string encrypt(const std::string& key, const std::string& plain) {
    std::string encrypted;
    AES_KEY aesKey;
    
    if (AES_set_encrypt_key(reinterpret_cast<const unsigned char*>(key.c_str()), 128, &aesKey) < 0) {
        return "";
    }
    
    int len = plain.length();
    
    if (len % 16 != 0) {
        len = (len / 16 + 1) * 16;
    }
    
    unsigned char outbuffer[1024];
    memset(outbuffer, 0, sizeof(outbuffer));
    AES_encrypt(reinterpret_cast<const unsigned char*>(plain.c_str()), outbuffer, &aesKey);
    
    encrypted.assign(reinterpret_cast<char*>(outbuffer), len);
    
    return encrypted;
}

std::string decrypt(const std::string& key, const std::string& encrypted) {
    std::string decrypted;
    AES_KEY aesKey;
    
    if (AES_set_decrypt_key(reinterpret_cast<const unsigned char*>(key.c_str()), 128, &aesKey) < 0) {
        return "";
    }
    
    unsigned char outbuffer[1024];
    memset(outbuffer, 0, sizeof(outbuffer));
    AES_decrypt(reinterpret_cast<const unsigned char*>(encrypted.c_str()), outbuffer, &aesKey);
    
    decrypted.assign(reinterpret_cast<char*>(outbuffer));
    
    return decrypted;
}

int main() {
    std::string key = "1234567890123456";
    std::string plain = "Hello, World!";
    
    // 加密
    std::string encrypted = encrypt(key, plain);
    std::cout << "Encrypted: " << encrypted << std::endl;
    
    // 解密
    std::string decrypted = decrypt(key, encrypted);
    std::cout << "Decrypted: " << decrypted << std::endl;
    
    return 0;
}
Copy after login

This article introduces some common techniques of data conversion and encoding and decoding in C in embedded system development, and provides relevant code examples. I hope it will be helpful to developers who are engaged in embedded system development.

The above is the detailed content of C++ data conversion and encoding and decoding function implementation skills in embedded system development. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How does the C   Standard Template Library (STL) work? How does the C Standard Template Library (STL) work? Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently? How do I use algorithms from the STL (sort, find, transform, etc.) efficiently? Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

How does dynamic dispatch work in C   and how does it affect performance? How does dynamic dispatch work in C and how does it affect performance? Mar 17, 2025 pm 01:08 PM

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

How do I use ranges in C  20 for more expressive data manipulation? How do I use ranges in C 20 for more expressive data manipulation? Mar 17, 2025 pm 12:58 PM

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

How do I use move semantics in C   to improve performance? How do I use move semantics in C to improve performance? Mar 18, 2025 pm 03:27 PM

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

How do I handle exceptions effectively in C  ? How do I handle exceptions effectively in C ? Mar 12, 2025 pm 04:56 PM

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

How do I use rvalue references effectively in C  ? How do I use rvalue references effectively in C ? Mar 18, 2025 pm 03:29 PM

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

How does C  's memory management work, including new, delete, and smart pointers? How does C 's memory management work, including new, delete, and smart pointers? Mar 17, 2025 pm 01:04 PM

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.

See all articles