Checks whether the given two numbers are a friendly pair
Friendly numbers − According to number theory, a friendly number is two or more numbers with the same abundance index.
Richness Index - The richness index of a natural number can be defined as the ratio between the sum of all divisors of a natural number and the natural number itself.
The abundance of number n can be expressed as $\mathrm{\frac{\sigma(n)}{n}}$, where $\mathrm{\sigma(n)}$ represents the divisor function equal to the approximation of all n number.
For example, the abundance index of the natural number 30 is,
$$\mathrm{\frac{\sigma(30)}{30}=\frac{1 2 3 5 6 10 15 30}{30}=\frac{72}{ 30}=\frac{12 }{5}}$$
If there is a number m mn, then the number n is called a "friendly number".
$\mathrm{\frac{\sigma(m)}{m}=\frac{\sigma(n)}{n}}$
Friendly Pair − Two numbers with the same surplus index are called "friendly pairs".
Problem Statement
Given two numbers Num1 and Num2. Returns if the two numbers are not a friendly pair.
Example 1
Input: Num1 = 30, Num2 = 140
Output: Yes
Explanation
is:Explanation
$$\mathrm{\frac{\sigma(30)}{30}=\frac{1 2 3 5 6 10 15 30}{30}=\frac{72}{ 30}=\frac{12 }{5}}$$
$$\mathrm{\frac{\sigma(140)}{140}=\frac{1 2 4 5 7 10 14 20 28 35 70 140}{140 }=\frac{336}{140}= \frac{12}{5}}$$
Since,\frac{\sigma(30)}{30}=\frac{\sigma(140)}{140}, 30 and 140 are a pair of friendly numbers.
Example Example 2
Input: Num1 = 5, Num2 = 24
Output: No
Explanation
is:Explanation
$$\mathrm{\frac{\sigma(5)}{5}=\frac{1 5}{5}=\frac{6}{5}=\frac{6}{5}} $ $
$$\mathrm{\frac{\sigma(24)}{24}=\frac{1 2 3 4 6 8 12 24}{24}=\frac{60}{ 24}=\frac{15 }{6}}$$
Since $\mathrm{\frac{\sigma(5)}{5}\neq\frac{\sigma(24)}{24}}$, 5 and 24 are not a friendly pair. p>
Method 1: Brute force method
The brute force way to solve this problem is to first find the sum of all divisors of the two numbers, then calculate the value of their abundance index, and compare to get the result.
pseudocode
procedure sumOfDivisors (n) sum = 0 for i = 1 to n if i is a factor of n sum = sum + i end if ans = sum end procedure procedure friendlyPair (num1, num2) sum1 = sumOfDivisors (num1) sum2 = sumOfDivisors (num2) abIndex1 = sum1 / num1 abIndex2 = sum2 / num2 if (abIndex1 == abIndex2) ans = TRUE else ans = FALSE end if end procedure
Example: C implementation
In the following program, the sum of all divisors is calculated to find the abundance index.
#include <bits/stdc++.h> using namespace std; // Function to find sum of all the divisors of number n int sumOfDivisors(int n){ int sum = 0; for (int i = 1; i <= n; i++){ if (n % i == 0){ sum += i; } } return sum; } // Function to find if two numbers are friendly pairs or not int friendlyPair(int num1, int num2){ // Finding the sum of all divisors of num1 and num2 int sum1 = sumOfDivisors(num1); int sum2 = sumOfDivisors(num2); // Calculating the abundancy index as the ratio of the sum of divisors by the number int abIn1 = sum1 / num1, abIn2 = sum2 / num2; // Friendly pair if the abundancy index of both the numbers are same if (abIn1 == abIn2){ return true; } return false; } int main(){ int num1 = 30, num2 = 140; cout << num1 << " and " << num2 << " are friendly pair : "; if (friendlyPair(num1, num2)){ cout << "YES"; } else{ cout << "NO"; } return 0; }
Output
30 and 140 are friendly pair : YES
Time complexity - O(n), because the sumOfDivisors() function traverses a loop
Space complexity - O(1)
Method 2: Reduced form of abundance index
The simplified form of the richness index can be found by dividing both the numerator and denominator by the greatest common divisor. We then check whether the two numbers are a friendly pair by checking whether the reduced forms of richness are equal, i.e. checking whether their numerators and denominators are equal.
pseudocode
procedure sumOfDivisors (n) ans = 1 for i = 1 to sqrt(n) count = 0 sum = 1 term = 1 while n % i == 0 count = count + 1 n = n / i term = term * i sum = sum + term ans = ans * sum if n >= 2 ans = ans * (n + 1) end if end procedure procedure gcd (n1, n2) if n1 == 0 return n2 end if rem = n2 % n1 return gcd (rem, n2) end procedure procedure friendlyPair (num1, num2) sum1 = sumOfDivisors (num1) sum2 = sumOfDivisors (num2) gcd1 = gcd (num1, sum1) gcd2 = gcd (num2, sum2) if (num1 / gcd1 == num2 / gcd2) && (sum1 / gcd1 == sum2 / gcd2) ans = TRUE else ans = FALSE end if end procedure
Example: C implementation
In the following program, we check whether the abundance index of the reduced form of two numbers is the same by comparing the numerator and denominator.
#include <bits/stdc++.h> using namespace std; // Function to find the sum of all the divisors of number n int sumOfDivisors(int n){ int ans = 1; // By looping till sqrt(n), we traverse all the prime factors of n for (int i = 2; i <= sqrt(n); i++){ int cnt = 0, sum = 1, term = 1; while (n % i == 0){ cnt++; // Reducing the value of n n /= i; term *= i; sum += term; } ans *= sum; } // When n is a prime number greater than 2 if (n >= 2){ ans *= (n + 1); } return ans; } // Function to find the gcd of two numbers int gcd(int num1, int num2){ if (num1 == 0) { return num2; } int rem = num2 % num1; return gcd(rem, num1); } // Function to find if two numbers are friendly pairs or not int friendlyPair(int num1, int num2){ // Finding the sum of all divisors of num1 and num2 int sum1 = sumOfDivisors(num1); int sum2 = sumOfDivisors(num2); // Finding gcd of num and the sum of its divisors int gcd1 = gcd(num1, sum1); int gcd2 = gcd(num2, sum2); // Checking if the numerator and denominator of the reduced abundancy index are the same or not if (((num1 / gcd1) == (num2 / gcd2)) && ((sum1 / gcd1) == (sum2 / gcd2))){ return true; } return false; } int main(){ int num1 = 30, num2 = 140; cout << num1 << " and " << num2 << " are friendly pair : "; if (friendlyPair(num1, num2)){ cout << "YES"; } else{ cout << "NO"; } return 0; }
Output
30 and 140 are friendly pair : YES
Time complexity - The time complexity of the sumOfDivisors() function is O(n1/2log2n).
Space complexity - O(1)
in conclusion
To sum up, a friendly pair refers to two natural numbers with the same abundance index, that is, the ratio of the sum of all divisors of the number to the number itself. To find whether two numbers are a friendly pair, follow the approach above, specifying a brute-force solution with time complexity O(n) and an optimized solution with time complexity O(n1/2log2n) plan.
The above is the detailed content of Checks whether the given two numbers are a friendly pair. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.
