Golang’s method of image removal and noise processing
Overview:
In digital image processing, noise removal is a very important step. Noise distorts images and affects subsequent image processing and analysis. Golang provides some powerful libraries and methods to process images. This article will introduce a method based on Golang to remove image noise.
image
package provides basic operations on images, such as opening, decoding, saving, etc. We can use the image.Decode()
function to load images. package main import ( "fmt" "image" _ "image/jpeg" _ "image/png" "os" ) func LoadImage(path string) (image.Image, error) { file, err := os.Open(path) if err != nil { return nil, err } defer file.Close() img, _, err := image.Decode(file) if err != nil { return nil, err } return img, nil } func main() { img, err := LoadImage("image.jpg") if err != nil { fmt.Println("Failed to load image:", err) return } fmt.Println("Loaded image successfully:", img.Bounds()) }
package main import ( "fmt" "github.com/disintegration/imaging" "image" "runtime" ) func MedianFilter(img image.Image) image.Image { bounds := img.Bounds() width, height := bounds.Max.X, bounds.Max.Y // 创建一个新的图像,用于存储处理后的结果 result := imaging.New(width, height, img.(*image.RGBA).Opaque) // 使用goroutine并行处理图像的每个像素点 numCPU := runtime.NumCPU() ch := make(chan int, numCPU) done := make(chan bool) for i := 0; i < numCPU; i++ { go func() { for y := range ch { for x := 0; x < width; x++ { // 取当前像素点周围的邻域像素点 neighbors := make([]uint8, 0) for dy := -1; dy <= 1; dy++ { for dx := -1; dx <= 1; dx++ { if x+dx >= 0 && x+dx < width && y+dy >= 0 && y+dy < height { r, _, _, _ := img.At(x+dx, y+dy).RGBA() neighbors = append(neighbors, uint8(r>>8)) } } } // 对邻域像素点进行排序,取中间值 imaging.QuickSortUint8(neighbors) // 将中间值设为当前像素点的RGB值 r, _, _, a := img.At(x, y).RGBA() result.Set(x, y, image.RGBA{ R: neighbors[len(neighbors)/2], G: neighbors[len(neighbors)/2], B: neighbors[len(neighbors)/2], A: uint8(a >> 8), }) } } done <- true }() } for y := 0; y < height; y++ { ch <- y } close(ch) for i := 0; i < numCPU; i++ { <-done } return result } func main() { img, err := LoadImage("image.jpg") if err != nil { fmt.Println("Failed to load image:", err) return } filteredImg := MedianFilter(img) imaging.Save(filteredImg, "filtered_image.jpg") fmt.Println("Filtered image saved successfully!") }
MedianFilter()
function and saved the processing image after. By using libraries such as image
and imaging
provided by Golang, we can quickly and easily implement image noise removal processing. This method can effectively improve the quality of the image, making it more suitable for subsequent image processing and analysis tasks.
This article introduces the Golang-based image noise removal processing method through code examples, hoping to be helpful to readers in practical applications. In practical applications, appropriate filtering methods and parameters can be selected according to the characteristics and needs of the image to obtain more ideal results.
The above is the detailed content of Golang implements image removal and noise processing methods. For more information, please follow other related articles on the PHP Chinese website!