


How to use C++ for high-performance image retrieval and image classification?
How to use C for high-performance image retrieval and image classification?
With the development of image processing and artificial intelligence, image retrieval and image classification have become popular research topics. In practical applications, how to achieve high-performance image retrieval and classification has become an important challenge. This article will introduce how to use C language to implement high-performance image retrieval and classification, and illustrate it through code examples.
1. Image retrieval
Image retrieval refers to searching for target images similar to the query image from the database. In practical applications, a high-performance image retrieval system needs to be fast, accurate and scalable. A simple example is given below to illustrate how to use C for image retrieval.
#include <iostream> #include <opencv2/opencv.hpp> cv::Mat preprocessImage(cv::Mat& image) { // 图像预处理,例如去除噪声、调整亮度等 cv::Mat processedImage; cv::GaussianBlur(image, processedImage, cv::Size(5, 5), 0); cv::cvtColor(processedImage, processedImage, cv::COLOR_BGR2GRAY); return processedImage; } double calculateSimilarity(cv::Mat& image1, cv::Mat& image2) { // 计算两幅图像的相似度,例如使用直方图比较 cv::Mat hist1, hist2; cv::calcHist(&image1, 1, 0, cv::Mat(), hist1, 1, &histSize, &histRange); cv::calcHist(&image2, 1, 0, cv::Mat(), hist2, 1, &histSize, &histRange); double similarity = cv::compareHist(hist1, hist2, CV_COMP_CORREL); return similarity; } int main() { // 加载数据库中的目标图像 std::vector<cv::Mat> databaseImages; // ... // 加载查询图像 cv::Mat queryImage = cv::imread("query.jpg"); cv::Mat processedQueryImage = preprocessImage(queryImage); // 遍历数据库中的图像,计算相似度 for (cv::Mat& image : databaseImages) { cv::Mat processedImage = preprocessImage(image); double similarity = calculateSimilarity(processedQueryImage, processedImage); // 保存相似度高的结果,例如大于某个阈值的结果 } return 0; }
In the above example code, we use the preprocessImage function to preprocess the image, such as removing noise, adjusting brightness, etc. The similarity between the preprocessed image and the query image is then calculated through the calculateSimilarity function. Finally, the images in the database are traversed to find target images whose similarity is higher than a certain threshold.
2. Image Classification
Image classification refers to dividing images into different categories or labels. In practical applications, a high-performance image classification system needs to be fast, accurate and scalable. A simple example is given below to illustrate how to use C for image classification.
#include <iostream> #include <opencv2/opencv.hpp> cv::Mat preprocessImage(cv::Mat& image) { // 图像预处理,例如去除噪声、调整亮度等 cv::Mat processedImage; cv::GaussianBlur(image, processedImage, cv::Size(5, 5), 0); cv::cvtColor(processedImage, processedImage, cv::COLOR_BGR2GRAY); return processedImage; } int classifyImage(cv::Mat& image, cv::Ptr<cv::ml::SVM>& svm) { // 图像分类,例如使用支持向量机(SVM)算法 cv::Mat processedImage = preprocessImage(image); cv::Mat featureVector = extractFeature(processedImage); // 提取图像特征 int predictedClassLabel = svm->predict(featureVector); // 预测类别标签 return predictedClassLabel; } int main() { // 加载已训练好的模型 cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::load("model.yml"); // 加载测试图像 cv::Mat testImage = cv::imread("test.jpg"); int predictedClassLabel = classifyImage(testImage, svm); std::cout << "Predicted class label: " << predictedClassLabel << std::endl; return 0; }
In the above example code, we use the preprocessImage function to preprocess the image, such as removing noise, adjusting brightness, etc. The image features are then extracted through the extractFeature function, such as using the local binary pattern (LBP) algorithm or the convolutional neural network (CNN) algorithm. Finally, the preprocessed and feature extracted images are classified through the trained SVM model to obtain the predicted category label.
In summary, using C language to achieve high-performance image retrieval and classification requires steps such as image preprocessing, similarity calculation, feature extraction, and model training. The performance of image retrieval and classification can be further improved by optimizing the selection of algorithms and data structures, parallelization, and hardware acceleration. I hope this article will be helpful to readers in using C for high-performance image retrieval and classification in practical applications.
The above is the detailed content of How to use C++ for high-performance image retrieval and image classification?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.
