Home Backend Development C++ How to use C++ for efficient text mining and text analysis?

How to use C++ for efficient text mining and text analysis?

Aug 27, 2023 pm 01:48 PM
c++ Text Analysis text mining

How to use C++ for efficient text mining and text analysis?

How to use C for efficient text mining and text analysis?

Overview:
Text mining and text analysis are important tasks in the fields of modern data analysis and machine learning. In this article, we will introduce how to use C language for efficient text mining and text analysis. We will focus on techniques in text preprocessing, feature extraction, and text classification, accompanied by code examples.

Text preprocessing:
Before text mining and text analysis, the original text usually needs to be preprocessed. Preprocessing includes removing punctuation, stop words, and special characters, converting to lowercase letters, and stemming. The following is a sample code using C for text preprocessing:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

#include <iostream>

#include <string>

#include <algorithm>

#include <cctype>

 

std::string preprocessText(const std::string& text) {

    std::string processedText = text;

     

    // 去掉标点符号和特殊字符

    processedText.erase(std::remove_if(processedText.begin(), processedText.end(), [](char c) {

        return !std::isalnum(c) && !std::isspace(c);

    }), processedText.end());

     

    // 转换为小写

    std::transform(processedText.begin(), processedText.end(), processedText.begin(), [](unsigned char c) {

        return std::tolower(c);

    });

     

    // 进行词干化等其他操作

     

    return processedText;

}

 

int main() {

    std::string text = "Hello, World! This is a sample text.";

    std::string processedText = preprocessText(text);

 

    std::cout << processedText << std::endl;

 

    return 0;

}

Copy after login

Feature extraction:
When performing text analysis tasks, the text needs to be converted into a numerical feature vector so that the machine learning algorithm can process it. Commonly used feature extraction methods include bag-of-words models and TF-IDF. The following is an example code for bag-of-words model and TF-IDF feature extraction using C:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

#include <iostream>

#include <string>

#include <vector>

#include <map>

#include <algorithm>

 

std::vector<std::string> extractWords(const std::string& text) {

    std::vector<std::string> words;

     

    // 通过空格分割字符串

    std::stringstream ss(text);

    std::string word;

    while (ss >> word) {

        words.push_back(word);

    }

     

    return words;

}

 

std::map<std::string, int> createWordCount(const std::vector<std::string>& words) {

    std::map<std::string, int> wordCount;

     

    for (const std::string& word : words) {

        wordCount[word]++;

    }

     

    return wordCount;

}

 

std::map<std::string, double> calculateTFIDF(const std::vector<std::map<std::string, int>>& documentWordCounts, const std::map<std::string, int>& wordCount) {

    std::map<std::string, double> tfidf;

    int numDocuments = documentWordCounts.size();

     

    for (const auto& wordEntry : wordCount) {

        const std::string& word = wordEntry.first;

        int wordDocumentCount = 0;

         

        // 统计包含该词的文档数

        for (const auto& documentWordCount : documentWordCounts) {

            if (documentWordCount.count(word) > 0) {

                wordDocumentCount++;

            }

        }

         

        // 计算TF-IDF值

        double tf = static_cast<double>(wordEntry.second) / wordCount.size();

        double idf = std::log(static_cast<double>(numDocuments) / (wordDocumentCount + 1));

        double tfidfValue = tf * idf;

         

        tfidf[word] = tfidfValue;

    }

     

    return tfidf;

}

 

int main() {

    std::string text1 = "Hello, World! This is a sample text.";

    std::string text2 = "Another sample text.";

     

    std::vector<std::string> words1 = extractWords(text1);

    std::vector<std::string> words2 = extractWords(text2);

     

    std::map<std::string, int> wordCount1 = createWordCount(words1);

    std::map<std::string, int> wordCount2 = createWordCount(words2);

     

    std::vector<std::map<std::string, int>> documentWordCounts = {wordCount1, wordCount2};

     

    std::map<std::string, double> tfidf1 = calculateTFIDF(documentWordCounts, wordCount1);

    std::map<std::string, double> tfidf2 = calculateTFIDF(documentWordCounts, wordCount2);

     

    // 打印TF-IDF特征向量

    for (const auto& tfidfEntry : tfidf1) {

        std::cout << tfidfEntry.first << ": " << tfidfEntry.second << std::endl;

    }

     

    return 0;

}

Copy after login

Text Classification:
Text classification is a common text mining task that divides text into different category. Commonly used text classification algorithms include Naive Bayes classifier and Support Vector Machine (SVM). The following is a sample code using C for text classification:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

#include <iostream>

#include <string>

#include <vector>

#include <map>

#include <cmath>

 

std::map<std::string, double> trainNaiveBayes(const std::vector<std::map<std::string, int>>& documentWordCounts, const std::vector<int>& labels) {

    std::map<std::string, double> classPriors;

    std::map<std::string, std::map<std::string, double>> featureProbabilities;

     

    int numDocuments = documentWordCounts.size();

    int numFeatures = documentWordCounts[0].size();

     

    std::vector<int> classCounts(numFeatures, 0);

     

    // 统计每个类别的先验概率和特征的条件概率

    for (int i = 0; i < numDocuments; i++) {

        std::string label = std::to_string(labels[i]);

         

        classCounts[labels[i]]++;

         

        for (const auto& wordCount : documentWordCounts[i]) {

            const std::string& word = wordCount.first;

             

            featureProbabilities[label][word] += wordCount.second;

        }

    }

     

    // 计算每个类别的先验概率

    for (int i = 0; i < numFeatures; i++) {

        double classPrior = static_cast<double>(classCounts[i]) / numDocuments;

        classPriors[std::to_string(i)] = classPrior;

    }

     

    // 计算每个特征的条件概率

    for (auto& classEntry : featureProbabilities) {

        std::string label = classEntry.first;

        std::map<std::string, double>& wordProbabilities = classEntry.second;

         

        double totalWords = 0.0;

        for (auto& wordEntry : wordProbabilities) {

            totalWords += wordEntry.second;

        }

         

        for (auto& wordEntry : wordProbabilities) {

            std::string& word = wordEntry.first;

            double& wordCount = wordEntry.second;

             

            wordCount = (wordCount + 1) / (totalWords + numFeatures);  // 拉普拉斯平滑

        }

    }

     

    return classPriors;

}

 

int predictNaiveBayes(const std::string& text, const std::map<std::string, double>& classPriors, const std::map<std::string, std::map<std::string, double>>& featureProbabilities) {

    std::vector<std::string> words = extractWords(text);

    std::map<std::string, int> wordCount = createWordCount(words);

     

    std::map<std::string, double> logProbabilities;

     

    // 计算每个类别的对数概率

    for (const auto& classEntry : classPriors) {

        std::string label = classEntry.first;

        double classPrior = classEntry.second;

        double logProbability = std::log(classPrior);

         

        for (const auto& wordEntry : wordCount) {

            const std::string& word = wordEntry.first;

            int wordCount = wordEntry.second;

             

            if (featureProbabilities.count(label) > 0 && featureProbabilities.at(label).count(word) > 0) {

                const std::map<std::string, double>& wordProbabilities = featureProbabilities.at(label);

                logProbability += std::log(wordProbabilities.at(word)) * wordCount;

            }

        }

         

        logProbabilities[label] = logProbability;

    }

     

    // 返回概率最大的类别作为预测结果

    int predictedLabel = 0;

    double maxLogProbability = -std::numeric_limits<double>::infinity();

     

    for (const auto& logProbabilityEntry : logProbabilities) {

        std::string label = logProbabilityEntry.first;

        double logProbability = logProbabilityEntry.second;

         

        if (logProbability > maxLogProbability) {

            maxLogProbability = logProbability;

            predictedLabel = std::stoi(label);

        }

    }

     

    return predictedLabel;

}

 

int main() {

    std::vector<std::string> documents = {

        "This is a positive document.",

        "This is a negative document."

    };

     

    std::vector<int> labels = {

        1, 0

    };

     

    std::vector<std::map<std::string, int>> documentWordCounts;

    for (const std::string& document : documents) {

        std::vector<std::string> words = extractWords(document);

        std::map<std::string, int> wordCount = createWordCount(words);

        documentWordCounts.push_back(wordCount);

    }

     

    std::map<std::string, double> classPriors = trainNaiveBayes(documentWordCounts, labels);

    int predictedLabel = predictNaiveBayes("This is a positive test document.", classPriors, featureProbabilities);

     

    std::cout << "Predicted Label: " << predictedLabel << std::endl;

     

    return 0;

}

Copy after login

Summary:
This article introduces how to use C for efficient text mining and text analysis, including text preprocessing, feature extraction and text classification. We show how to implement these functions through code examples, hoping to help you in practical applications. Through these technologies and tools, you can process and analyze large amounts of text data more efficiently.

The above is the detailed content of How to use C++ for efficient text mining and text analysis?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

How to apply snake nomenclature in C language? How to apply snake nomenclature in C language? Apr 03, 2025 pm 01:03 PM

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Usage of releasesemaphore in C Usage of releasesemaphore in C Apr 04, 2025 am 07:54 AM

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Issues with Dev-C version Issues with Dev-C version Apr 03, 2025 pm 07:33 PM

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

C   and System Programming: Low-Level Control and Hardware Interaction C and System Programming: Low-Level Control and Hardware Interaction Apr 06, 2025 am 12:06 AM

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.

See all articles