Table of Contents
List
Example
Tuple
Set
SET
dictionary
Comparison Chart
in conclusion
Home Backend Development Python Tutorial The differences and applications of lists, tuples, sets and dictionaries in Python

The differences and applications of lists, tuples, sets and dictionaries in Python

Aug 27, 2023 pm 02:09 PM
List tuple dictionary

The differences and applications of lists, tuples, sets and dictionaries in Python

The high-level interpreted programming language Python comes with many built-in data structures, including lists, tuples, sets, and dictionaries. These data structures are crucial to the Python programming environment because they provide an efficient way to store and manage data. This article compares and contrasts several data structures, highlighting their advantages, disadvantages, and best usage scenarios to assist developers.

List

  • A list is an arranged data structure represented by a square part []. Since it is a mutable information structure, you can change any parts as you add them.

  • You can add, remove or modify entries in the list using built-in methods such as append(), remove() and insert().

  • Individual content in the list can also be obtained and changed through slicing and sorting strategies, so it is very useful in scenarios where data is constantly changing and heavy functions are running.

  • Shopping lists are a great way to use lists because you can add, remove, or modify items as needed, and can be used to store lists of values, such as lists of names or numbers.

The Chinese translation of

Example

is:

Example

# Define a list of fruits
fruits = ['apple', 'banana', 'orange']

# Add a new fruit to the end of the list
fruits.append('kiwi')

# Print the contents of the list
print(fruits)  # Output: ['apple', 'banana', 'orange', 'kiwi']
Copy after login

Tuple

  • A tuple is an ordered collection of items enclosed in square brackets (). Since it is a permanent information structure, you cannot change any of its parts after they are added.

  • Once created, the parts of the tuple remain unchanged. However, you can create a new tuple by merging two or more tuples. In Python, it is common to store data in tuples that need to change infrequently.

  • Tuples can be used, for example, to record the direction of a point on a chart. Tuples are particularly useful for returning some qualities from a function since you might be returning a tuple from a function rather than creating unambiguous factors for everything.

The Chinese translation of

Example

is:

Example

# Define a tuple of names
names = ('Alice', 'Bob', 'Charlie')

# Print the third name in the tuple
print(names[2])  # Output: Charlie
Copy after login
The Chinese translation of

Set

is:

SET

  • A collection is an unordered set of distinct components enclosed in curly braces. It is a mutable data structure, so when a collection is created, you can add or remove elements from it. You can also perform set operations such as union, intersection, and difference on sets.

  • In Python, sets are often used to perform mathematical operations, such as finding the intersection or union of sets and eliminating duplicates.

The Chinese translation of

Example

is:

Example

# Define a set of unique numbers
numbers = {1, 2, 3, 4, 4, 4}

# Print the contents of the set
print(numbers)  # Output: {1, 2, 3, 4}
Copy after login

dictionary

  • The curly brace collection of key-value pairs is the basis of the dictionary. It is a mutable information structure, which means you can add, remove, or change components in a word reference after it is created. Index operations can be used to obtain the value of a key.

  • Dictionaries are commonly used in Python to store data in a structured format. For example, you can use a dictionary to store student details such as name, age, and grade. Dictionaries are also useful for storing configuration settings in programs.

The Chinese translation of

Example

is:

Example

# Define a dictionary of ages
ages = {'Hancock': 25, 'Julie': 30, 'Jamie': 35}

# Print the age of Hancock
print(ages['Hancock'])  # Output: 25
Copy after login

Comparison Chart

List

Tuple

set up

dictionary

grammar

[ ]

( )

{ }

{ }

Variable/Immutable

Variable

Immutable

Variable

Variable

Order

Ordered

Ordered

Unordered list

Unordered list

repeat

allow

allow

Not allowed

Not allowed

index

allow

allow

Not allowed

allow

slice

allow

allow

Not allowed

Not allowed

Common operations

Append(), insert(), delete(), pop(), extend()

Concatenation, unpacking, indexing, slicing

add(), remove(), union(), intersection(), difference()

keys(), values(), items(), get()

app

Storing a variable sequence of items

Storing an immutable sequence of items, returning multiple values ​​from a function

Perform a set operation and remove duplicate items from the list

Storage key-value pairs and provide structured access to data

limit

It is slower when processing large lists and takes up more memory than tuples

Elements cannot be added, deleted or modified after creation

Does not preserve order, cannot store duplicates

Keys must be unique and immutable, values ​​can be mutable or immutable

in conclusion

To store and manipulate data efficiently, Python comes with many built-in data structures. The unmistakable qualities of records, tuples, sets, and word references make them suitable for different use cases. By studying the various variations and applications of various data structures, developers can choose the ideal data structure for their specific needs.

The above is the detailed content of The differences and applications of lists, tuples, sets and dictionaries in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Download Files in Python How to Download Files in Python Mar 01, 2025 am 10:03 AM

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How to Work With PDF Documents Using Python How to Work With PDF Documents Using Python Mar 02, 2025 am 09:54 AM

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

How to Cache Using Redis in Django Applications How to Cache Using Redis in Django Applications Mar 02, 2025 am 10:10 AM

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Introducing the Natural Language Toolkit (NLTK) Introducing the Natural Language Toolkit (NLTK) Mar 01, 2025 am 10:05 AM

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

See all articles