Golang builds an intelligent recommendation system: using Baidu AI interface to achieve personalized recommendations
Introduction:
In recent years, artificial intelligence technology has been widely used in various fields Applications, one of which is in recommender systems. Recommendation systems recommend personalized content and products to users by analyzing users' historical behaviors and preferences to improve user experience and satisfaction. This article will introduce how to use Golang to build an intelligent recommendation system and use Baidu AI interface to implement personalized recommendation functions.
1. Principle of the recommendation system
The main principle of the recommendation system is to predict the content or products that the user may be interested in through data analysis and machine learning algorithms based on the user's historical behavior and preferences, so as to personalize the system. recommendations. Recommendation systems are mainly divided into two types: collaborative filtering and content filtering. Collaborative filtering recommends content based on behavioral similarities between users and other users, while content filtering recommends content based on content characteristics and user preferences.
2. Introduction to Baidu AI interface
Baidu AI open platform provides interfaces for a variety of artificial intelligence functions, including face recognition, speech synthesis, etc. In this article, we will use Baidu AI's natural language processing interface to implement personalized recommendations based on text content.
3. Project structure
We will use Golang language to build an intelligent recommendation system. The structure of the project is as follows:
. ├── main.go ├── handler │ └── recommendation_handler.go ├── service │ └── recommendation_service.go └── baidu_ai └── nlp.go
4. Code implementation
In the baidu_ai/nlp.go
file, implement the function that calls Baidu AI interface:
package baidu_ai import ( "encoding/json" "net/http" "net/url" ) type NLPResponse struct { LogID int `json:"log_id"` Text string `json:"text"` Items []Item `json:"items"` } type Item struct { Prop string `json:"prop"` } func GetKeywords(text string) ([]string, error) { apiURL := "https://aip.baidubce.com/rpc/2.0/kg/interpret" apiKey := "your_api_key" secretKey := "your_secret_key" response, err := http.PostForm(apiURL, url.Values{ "text": {text}, "api_key": {apiKey}, "secret_key": {secretKey}, }) if err != nil { return nil, err } defer response.Body.Close() var result NLPResponse err = json.NewDecoder(response.Body).Decode(&result) if err != nil { return nil, err } keywords := make([]string, len(result.Items)) for i, item := range result.Items { keywords[i] = item.Prop } return keywords, nil }
In service/recommendation_service.go
In the file, implement the keyword-based recommendation function:
package service import ( "your_project/baidu_ai" ) type RecommendationService struct { } func NewRecommendationService() *RecommendationService { return &RecommendationService{} } func (s *RecommendationService) GetRecommendations(text string) ([]string, error) { keywords, err := baidu_ai.GetKeywords(text) if err != nil { return nil, err } // 根据关键词进行推荐逻辑的实现 return recommendations, nil }
In the handler/recommendation_handler.go
file, implement the API processing function:
package handler import ( "encoding/json" "net/http" "your_project/service" ) type RecommendationHandler struct { recommendationService *service.RecommendationService } func NewRecommendationHandler() *RecommendationHandler { return &RecommendationHandler{ recommendationService: service.NewRecommendationService(), } } func (h *RecommendationHandler) GetRecommendations(w http.ResponseWriter, r *http.Request) { var requestBody struct { Text string `json:"text"` } err := json.NewDecoder(r.Body).Decode(&requestBody) if err != nil { http.Error(w, err.Error(), http.StatusBadRequest) return } recommendations, err := h.recommendationService.GetRecommendations(requestBody.Text) if err != nil { http.Error(w, err.Error(), http.StatusInternalServerError) return } responseBody, err := json.Marshal(recommendations) if err != nil { http.Error(w, err.Error(), http.StatusInternalServerError) return } w.Header().Set("Content-Type", "application/json") w.Write(responseBody) }
In the main.go
file, implement the HTTP service and register the API route:
package main import ( "log" "net/http" "your_project/handler" ) func main() { recommendationHandler := handler.NewRecommendationHandler() http.HandleFunc("/recommendations", recommendationHandler.GetRecommendations) log.Fatal(http.ListenAndServe(":8080", nil)) }
5. Usage method
baidu_ai/nlp.go
file. go run main.go
. http://localhost:8080/recommendations
. The format of the request body is JSON and contains a text
field with a value of Text content to be personalized recommended. Conclusion:
By using Golang and Baidu AI interface, we can easily build an intelligent recommendation system and realize the function of personalized recommendation. Due to Golang's high performance and the rich functionality of Baidu's AI interface, we are able to better meet users' needs and provide a better recommendation experience.
Reference materials:
The above is the detailed content of Golang builds an intelligent recommendation system: using Baidu AI interface to achieve personalized recommendations. For more information, please follow other related articles on the PHP Chinese website!