Binary search in PHP
What is binary search?
Binary search is a search algorithm used to efficiently find the position of a target value in a sorted array (or list). It works by repeatedly splitting the search range in half and comparing the middle element to the target value.
The binary search algorithm follows the following steps:
Start with the entire sorted array.
Set the left pointer to the first element of the array and the right pointer to the last element.
Calculate the middle index as the average of the left and right pointers (integer division).
Compare the value at the intermediate index to the target value.
If the intermediate value is equal to the target value, the search is successful and the algorithm returns the index.
If the target value is greater than the middle value, eliminate the left half of the search range by updating the left pointer to mid 1.
If the target value is less than the middle value, eliminate the right half of the search range by updating the right pointer to mid - 1.
Repeat steps 3 to 7 until the target value is found or the search range is empty (the left pointer is larger than the right pointer).
If the search range is empty and the target value is not found, the algorithm concludes that the target value does not exist in the array and returns -1 or an appropriate indication.
Binary search is a very efficient algorithm with a time complexity of O(log n), where n is the number of elements in the array. It is particularly effective for large sorted arrays because it quickly narrows the search range by splitting it in half at each step, allowing for fast searches even with a large number of elements.
Binary search PHP program
Method 1 - Using iteration
Example
<?php function binarySearch($arr, $target) { $left = 0; $right = count($arr) - 1; while ($left <= $right) { $mid = floor(($left + $right) / 2); // Check if the target value is found at the middle index if ($arr[$mid] === $target) { return $mid; } // If the target is greater, ignore the left half if ($arr[$mid] < $target) { $left = $mid + 1; } // If the target is smaller, ignore the right half else { $right = $mid - 1; } } // Target value not found in the array return -1; } // Example usage 1 $sortedArray = [2, 5, 8, 12, 16, 23, 38, 56, 72, 91]; $targetValue = 91; $resultIndex = binarySearch($sortedArray, $targetValue); if ($resultIndex === -1) { echo "Target value not found in the array.<br>"; } else { echo "Target value found at index $resultIndex.<br>"; } // Example usage 2 $targetValue = 42; $resultIndex = binarySearch($sortedArray, $targetValue); if ($resultIndex === -1) { echo "Target value not found in the array."; } else { echo "Target value found at index $resultIndex."; } ?>
Output
Target value found at index 9. Target value not found in the array.
Method 2 - Using Recursion
Example
<?php function binarySearchRecursive($arr, $target, $left, $right) { if ($left > $right) { // Target value not found in the array return -1; } $mid = floor(($left + $right) / 2); // Check if the target value is found at the middle index if ($arr[$mid] === $target) { return $mid; } // If the target is greater, search the right half if ($arr[$mid] < $target) { return binarySearchRecursive($arr, $target, $mid + 1, $right); } // If the target is smaller, search the left half return binarySearchRecursive($arr, $target, $left, $mid - 1); } // Wrapper function for the recursive binary search function binarySearch($arr, $target) { $left = 0; $right = count($arr) - 1; return binarySearchRecursive($arr, $target, $left, $right); } // Example usage $sortedArray = [2, 5, 8, 12, 16, 23, 38, 56, 72, 91]; $targetValue = 16; $resultIndex = binarySearch($sortedArray, $targetValue); if ($resultIndex === -1) { echo "Target value not found in the array."; } else { echo "Target value found at index $resultIndex."; } ?>
Output
Target value found at index 4.
in conclusion
In summary, binary search is a powerful algorithm that can efficiently find a target value in a sorted array. It provides two common implementations: iterative and recursive. The iterative method uses a while loop to repeatedly split the search range in half until the target value is found or the range becomes empty. It has a simple implementation and is perfect for most scenarios. On the other hand, recursive methods employ recursive functions to perform binary searches. It follows the same logic as the iterative method, but uses function calls instead of loops. Recursive binary search provides a cleaner implementation, but may have a slightly higher overhead due to function call stack manipulation. Overall, both methods provide an efficient and reliable way to perform binary search operations.
The above is the detailed content of Binary search in PHP. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Alipay PHP...

JWT is an open standard based on JSON, used to securely transmit information between parties, mainly for identity authentication and information exchange. 1. JWT consists of three parts: Header, Payload and Signature. 2. The working principle of JWT includes three steps: generating JWT, verifying JWT and parsing Payload. 3. When using JWT for authentication in PHP, JWT can be generated and verified, and user role and permission information can be included in advanced usage. 4. Common errors include signature verification failure, token expiration, and payload oversized. Debugging skills include using debugging tools and logging. 5. Performance optimization and best practices include using appropriate signature algorithms, setting validity periods reasonably,

The application of SOLID principle in PHP development includes: 1. Single responsibility principle (SRP): Each class is responsible for only one function. 2. Open and close principle (OCP): Changes are achieved through extension rather than modification. 3. Lisch's Substitution Principle (LSP): Subclasses can replace base classes without affecting program accuracy. 4. Interface isolation principle (ISP): Use fine-grained interfaces to avoid dependencies and unused methods. 5. Dependency inversion principle (DIP): High and low-level modules rely on abstraction and are implemented through dependency injection.

How to automatically set the permissions of unixsocket after the system restarts. Every time the system restarts, we need to execute the following command to modify the permissions of unixsocket: sudo...

How to debug CLI mode in PHPStorm? When developing with PHPStorm, sometimes we need to debug PHP in command line interface (CLI) mode...

Article discusses late static binding (LSB) in PHP, introduced in PHP 5.3, allowing runtime resolution of static method calls for more flexible inheritance.Main issue: LSB vs. traditional polymorphism; LSB's practical applications and potential perfo

Sending JSON data using PHP's cURL library In PHP development, it is often necessary to interact with external APIs. One of the common ways is to use cURL library to send POST�...

Static binding (static::) implements late static binding (LSB) in PHP, allowing calling classes to be referenced in static contexts rather than defining classes. 1) The parsing process is performed at runtime, 2) Look up the call class in the inheritance relationship, 3) It may bring performance overhead.
