Can a mouse in a maze make multiple steps or jumps?
The mouse in the maze problem is one of the well-known backtracking problems. Here we will see that the problem remains almost unchanged. Suppose an NxN maze M is given. The starting point is the upper left corner M[0, 0], and the end point is the lower right corner M[N – 1, N – 1]. A mouse is placed at the starting point. Our goal is to find a path from the starting point to the end point that allows the mouse to reach its destination. Here mice can jump (variant). Now there are some restrictions
- The mouse can move right or down.
- A 0 in a cell in the maze means that the cell is blocked.
- Non-zero cells represent valid paths.
- The number in a cell indicates the maximum number of jumps the rat can make from that cell. ul>
Algorithm
ratInMaze
begin if destination is reached, then print the solution matrix else 1. Place the current cell inside the solution matrix as 1 2. Move forward or jump (check max jump value) and recursively check if move leads to solution or not. 3. If the move taken from the step 2 is not correct, then move down, and check it leads to the solution or not 4. If none of the solutions in step 2 and 3 are correct, then make the current cell 0. end if end
Example
#include <iostream> #define N 4 using namespace std; void dispSolution(int sol[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) cout << sol[i][j] << " "; cout << endl; } } bool isSafe(int maze[N][N], int x, int y) { //check whether x,y is valid or not // when (x, y) is outside of the maze, then return false if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] != 0) return true; return false; } bool ratMazeSolve(int maze[N][N], int x, int y, int sol[N][N]) { if (x == N - 1 && y == N - 1) { //if destination is found, return true sol[x][y] = 1; return true; } if (isSafe(maze, x, y)) { sol[x][y] = 1; //mark 1 into solution matrix for (int i = 1; i <= maze[x][y] && i < N; i++) { if (ratMazeSolve(maze, x + i, y, sol)) //move right return true; if (ratMazeSolve(maze, x, y + i, sol)) //move down return true; } sol[x][y] = 0; //if the solution is not valid, then make it 0 return false; } return false; } bool solveMaze(int maze[N][N]) { int sol[N][N] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; if (!ratMazeSolve(maze, 0, 0, sol)) { cout << "Solution doesn't exist"; return false; } dispSolution(sol); return true; } main() { int maze[N][N] = { { 2, 1, 0, 0 }, { 3, 0, 0, 1 }, { 0, 1, 0, 1 }, { 0, 0, 0, 1 } }; solveMaze(maze); }
Output
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
The above is the detailed content of Can a mouse in a maze make multiple steps or jumps?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)
