Table of Contents
什么是十六进制数
什么是八进制
我们必须做什么
示例
算法
输出
Home Backend Development C++ Hexadecimal to octal conversion program in C program

Hexadecimal to octal conversion program in C program

Aug 29, 2023 pm 02:17 PM
c program hexadecimal Octal

我们得到一个十六进制数字作为字符串;任务是将其转换为八进制。要将十六进制数转换为八进制数,我们必须 -

  • 找到与十六进制数等效的二进制数。
  • 将二进制数转换为八进制数。

什么是十六进制数

十六进制数是以16为基数的数字,数字从0到9,从10开始数字表示为A其中代表 10,B 代表 11,C 代表 12,D 代表 13,E 代表 14,F 代表 15。

要将十六进制数转换为二进制数,每个数字都会转换为 4 位的二进制数

什么是八进制

计算机中的八进制以8为基数表示,即0-7的八进制数由三个二进制数或三个二进制数字组成。

我们必须做什么

就像我们有一个十六进制数 1A6,所以它现在对于十六进制表示 1、10 和 6首先,我们必须找到十六进制数的二进制等价物,即,

Hexadecimal to octal conversion program in C program

因此,1A6 的二进制 = 0001 1010 0110

现在找到十六进制数的二进制后,下一个任务是找到八进制

在此之前,我们将二进制数分为三组。分组为 3 后,我们将得到 000 110 100 110

其八进制表示形式为 -

Hexadecimal to octal conversion program in C program

因此十六进制数 1A6 的八进制表示为 − 646

示例

Input: 1A6
Output: Octal Value = 646
Explanation:

Input: 1AA
Output: 652
Copy after login

我们将用来解决给定问题的方法 -

  • 获取输入并将其存储为字符串。
  • 转换十六进制数或表达式转换为二进制,按照以下方法 -
    • 通过添加各自的二进制表示来检查所有 16 种十六进制情况。
    • 返回结果。
  • 按照以下步骤将二进制数转换为八进制数 -
    • 通过比较二进制数与八进制数的所有可能情况,取 3 个位置.
    • 设置八进制的值=(val * place)+八进制;
    • 二进制数除以1000
    • place *= 10
    • < /ul>
    • 返回结果。

    算法

    Start
    Step 1-> In function long long int hexa_binary(char hex[])
       Declare variables binary, place
       Declare and initialize i = 0, rem, val
       Initialize t n = strlen(hex)
       Initialize binary = 0ll and place = 0ll
       Loop For i = 0 and hex[i] != &#39;\0&#39; and i++ {
          binary = binary * place;
          switch (hex[i]) {
             case &#39;0&#39;:
                binary += 0
             case &#39;1&#39;:
                binary += 1
             case &#39;2&#39;:
                binary += 10
             case &#39;3&#39;:
                binary += 11
             case &#39;4&#39;:
                binary += 100
             case &#39;5&#39;:
                binary += 101
             case &#39;6&#39;:
                binary += 110
             case &#39;7&#39;:
                binary += 111
             case &#39;8&#39;:
                binary += 1000
             case &#39;9&#39;:
                binary += 1001
             case &#39;a&#39;:
             case &#39;A&#39;:
                binary += 1010
             case &#39;b&#39;:
             case &#39;B&#39;:
                binary += 1011
             case &#39;c&#39;:
             case &#39;C&#39;:
                binary += 1100
             case &#39;d&#39;:
             case &#39;D&#39;:
                binary += 1101;
                break;
             case &#39;e&#39;:
             case &#39;E&#39;:
                binary += 1110;
                break;
             case &#39;f&#39;:
             case &#39;F&#39;:
                binary += 1111;
                break;
             default:
                printf("Invalid hexadecimal input.");
          }
          place = 10000;
       }
       return binary;
    }
    long long int binary_oct(long long binary) {
       long long int octal, place;
       int i = 0, rem, val;
       octal = 0ll;
       place = 0ll;
       place = 1;
       while (binary > 0) {
          rem = binary % 1000;
          switch (rem) {
          case 0:
             val = 0;
             break;
          case 1:
             val = 1;
             break;
          case 10:
             val = 2;
             break;
          case 11:
             val = 3;
             break;
          case 100:
             val = 4;
             break;
          case 101:
             val = 5;
             break;
          case 110:
             val = 6;
             break;
          case 111:
             val = 7;
             break;
          }
          octal = (val * place) + octal;
          binary /= 1000;
          place *= 10;
       }
       return octal;
    }
    long long int hexa_oct(char hex[]) {
       long long int octal, binary;
       // convert HexaDecimal to Binary
       binary = hexa_binary(hex);
       // convert Binary to Octal
       octal = binary_oct(binary);
       return octal;
    }
    int main() {
       char hex[20] = "1a99";
       printf("Octal Value = %lld", hexa_oct(hex));
       return 0;
    }
    Copy after login

    示例

    #include <stdio.h>
    #include <string.h>
    #include <math.h>
    //To convert hex to binary first
    long long int hexa_binary(char hex[]) {
       long long int binary, place;
       int i = 0, rem, val;
       int n = strlen(hex);
       binary = 0ll;
       place = 0ll;
       for (i = 0; hex[i] != &#39;\0&#39;; i++) {
          binary = binary * place;
          switch (hex[i]) {
          case &#39;0&#39;:
             binary += 0;
             break;
          case &#39;1&#39;:
             binary += 1;
             break;
          case &#39;2&#39;:
             binary += 10;
             break;
          case &#39;3&#39;:
             binary += 11;
             break;
          case &#39;4&#39;:
             binary += 100;
             break;
          case &#39;5&#39;:
             binary += 101;
             break;
          case &#39;6&#39;:
             binary += 110;
             break;
          case &#39;7&#39;:
             binary += 111;
             break;
          case &#39;8&#39;:
             binary += 1000;
             break;
          case &#39;9&#39;:
             binary += 1001;
             break;
          case &#39;a&#39;:
          case &#39;A&#39;:
             binary += 1010;
             break;
          case &#39;b&#39;:
          case &#39;B&#39;:
             binary += 1011;
             break;
          case &#39;c&#39;:
          case &#39;C&#39;:
             binary += 1100;
             break;
          case &#39;d&#39;:
          case &#39;D&#39;:
             binary += 1101;
             break;
          case &#39;e&#39;:
          case &#39;E&#39;:
             binary += 1110;
             break;
          case &#39;f&#39;:
          case &#39;F&#39;:
             binary += 1111;
             break;
          default:
             printf("Invalid hexadecimal input.");
          }
          place = 10000;
       }
       return binary;
    }
    //To convert binary to octal
    long long int binary_oct(long long binary) {
       long long int octal, place;
       int i = 0, rem, val;
       octal = 0ll;
       place = 0ll;
       place = 1;
       // giving all binary numbers for octal conversion
       while (binary > 0) {
          rem = binary % 1000;
          switch (rem) {
          case 0:
             val = 0;
             break;
          case 1:
             val = 1;
             break;
          case 10:
             val = 2;
             break;
          case 11:
             val = 3;
             break;
          case 100:
             val = 4;
             break;
          case 101:
             val = 5;
             break;
          case 110:
             val = 6;
             break;
          case 111:
             val = 7;
             break;
          }
          octal = (val * place) + octal;
          binary /= 1000;
          place *= 10;
       }
       return octal;
    }
    // to convert the hexadecimal number to octal
    long long int hexa_oct(char hex[]) {
       long long int octal, binary;
       // convert HexaDecimal to Binary
       binary = hexa_binary(hex);
       // convert Binary to Octal
       octal = binary_oct(binary);
       return octal;
    }
    //main function
    int main() {
       char hex[20] = "5CD";
       printf("Octal Value = %lld", hexa_oct(hex));
       return 0;
    }
    Copy after login

    输出

    Octal Value = 2715
    Copy after login

    The above is the detailed content of Hexadecimal to octal conversion program in C program. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Translate the following into Chinese: C program to convert Roman numerals to decimal numbers Translate the following into Chinese: C program to convert Roman numerals to decimal numbers Sep 05, 2023 pm 09:53 PM

Given below is a C language algorithm to convert Roman numerals to decimal numbers: Algorithm Step 1 - Start Step 2 - Read Roman numerals at runtime Step 3 - Length: = strlen(roman) Step 4 - For i=0 to Length-1 Step 4.1-switch(roman[i]) Step 4.1.1-case'm': &nbs

C++ program to compare the lexicographic order of two strings C++ program to compare the lexicographic order of two strings Sep 04, 2023 pm 05:13 PM

Lexicographic string comparison means that strings are compared in dictionary order. For example, if there are two strings 'apple' and 'appeal', the first string will come last because the first three characters of 'app' are the same. Then for the first string the character is 'l' and in the second string the fourth character is 'e'. Since 'e' is shorter than 'l', it will come first if we sort lexicographically. Strings are compared lexicographically before being arranged. In this article, we will see different techniques for lexicographically comparing two strings using C++. Using the compare() function in C++ strings The C++string object has a compare()

C program to find length of linked list C program to find length of linked list Sep 07, 2023 pm 07:33 PM

Linked lists use dynamic memory allocation, i.e. they grow and shrink accordingly. They are defined as collections of nodes. Here, a node has two parts, data and links. The representation of data, links and linked lists is as follows - Types of linked lists There are four types of linked lists, as follows: - Single linked list/Singly linked list Double/Doubly linked list Circular single linked list Circular double linked list We use the recursive method to find the length of the linked list The logic is -intlength(node *temp){ if(temp==NULL) returnl; else{&n

C program uses rename() function to change file name C program uses rename() function to change file name Sep 21, 2023 pm 10:01 PM

The rename function changes a file or directory from its old name to its new name. This operation is similar to the move operation. So we can also use this rename function to move files. This function exists in the stdio.h library header file. The syntax of the rename function is as follows: intrename(constchar*oldname,constchar*newname); The function of the rename() function accepts two parameters. One is oldname and the other is newname. Both parameters are pointers to constant characters that define the old and new names of the file. Returns zero if the file was renamed successfully; otherwise, returns a nonzero integer. During a rename operation

C++ program to find the value of the inverse hyperbolic sine function taking a given value as argument C++ program to find the value of the inverse hyperbolic sine function taking a given value as argument Sep 17, 2023 am 10:49 AM

Hyperbolic functions are defined using hyperbolas instead of circles and are equivalent to ordinary trigonometric functions. It returns the ratio parameter in the hyperbolic sine function from the supplied angle in radians. But do the opposite, or in other words. If we want to calculate an angle from a hyperbolic sine, we need an inverse hyperbolic trigonometric operation like the hyperbolic inverse sine operation. This course will demonstrate how to use the hyperbolic inverse sine (asinh) function in C++ to calculate angles using the hyperbolic sine value in radians. The hyperbolic arcsine operation follows the following formula -$$\mathrm{sinh^{-1}x\:=\:In(x\:+\:\sqrt{x^2\:+\:1})}, Where\:In\:is\:natural logarithm\:(log_e\:k)

C++ program to print dictionary C++ program to print dictionary Sep 11, 2023 am 10:33 AM

A map is a special type of container in C++ in which each element is a pair of two values, namely a key value and a map value. The key value is used to index each item, and the mapped value is the value associated with the key. Regardless of whether the mapped value is unique, the key is always unique. To print map elements in C++ we have to use iterator. An element in a set of items is indicated by an iterator object. Iterators are primarily used with arrays and other types of containers (such as vectors), and they have a specific set of operations that can be used to identify specific elements within a specific range. Iterators can be incremented or decremented to reference different elements present in a range or container. The iterator points to the memory location of a specific element in the range. Printing a map in C++ using iterators First, let's look at how to define

C++ program to check if a character is alphabetic or non-alphabetic C++ program to check if a character is alphabetic or non-alphabetic Sep 14, 2023 pm 03:37 PM

Using strings or characters is sometimes very useful when solving some logic programming problems. A string is a collection of characters, which is a 1-byte data type used to hold symbols in ASCII values. Symbols can be English letters, numbers, or special characters. In this article, we will learn how to check if a character is an English letter or a letter of the alphabet using C++. Checking the isalpha() function To check if a number is a letter, we can use the isalpha() function in the ctype.h header file. This takes a character as input and returns true if it is an alphabet, false otherwise. Let us look at the following C++ implementation to understand the usage of this function. The Chinese translation of Example is: show

C++ program to get the imaginary part of a given complex number C++ program to get the imaginary part of a given complex number Sep 06, 2023 pm 06:05 PM

Modern science relies heavily on the concept of plural numbers, which was first established in the early 17th century by Girolamo Cardano, who introduced it in the 16th century. The formula for complex numbers is a+ib, where a holds the html code and b is a real number. A complex number is said to have two parts: the real part <a> and the imaginary part (<ib>). The value of i or iota is √-1. The plural class in C++ is a class used to represent complex numbers. The complex class in C++ can represent and control several complex number operations. Let's take a look at how to represent and control the display of plural numbers. imag() member function As mentioned above, complex numbers are composed of real part and imaginary part. To display the real part we use real()

See all articles