The circumference of a circle can be defined as the outer boundary of the circle. It is the circumference of the circle. Every point around the circle follows certain properties as shown below -
Point (x,y) is located inside the circle such that $\mathrm{x^2 y^2
Point (x,y) is located on the circle such that $\mathrm{x^2 y^2 = R^2}$
Point (x,y) is located outside the circle, such that $\mathrm{x^2 y^2 > R^2}$
Where R = radius of the circle.
Given a string S representing a series of moves (L, R, U, D) and an integer R representing the radius of a circle. Check whether any point on the circumference of a circle of radius R with the origin can be reached by selecting any subsequence of moves starting from S. The operation of each move is as follows,
L = Decrease x coordinate
R = incremental x coordinate
U = y coordinate increment
D = Decrementing y coordinate
enter
S = “RURDLR” R = 2
Output
Yes
Select subsequence "RR" -
Initially, (0, 0) R -> (1, 0) R -> (2, 0).
Perimeter may be 22 02 = 4 = R2
enter
S = “UUUUU” R = 6
Output
No
Select the largest subsequence "UUUU" -
Initially, (0, 0) U -> (0, 1) U -> (0, 2) U -> (0, 3) U -> (0, 4) U -> (0, 5) .
It is impossible to reach the circumference because 02 52 = 25 R2
The solution to the problem is to find all possible subsequences of the string S and then check whether each subsequence can reach the circle. These conditions are checked by maintaining counters for x and y, where x is decremented on each L and incremented on each R. Similarly, y decreases on every D and increases on every U. Then check x2 y2 = R2 to check if the end point is on the circumference.
procedure subsequence (S, sub, vec): if S is empty add sub to vec return end if subsequence(S.substring(1), sub + S[0], vec) subsequence(S.substring(1), sub, vec) end procedure procedure checkSeq (S, R) x = 0 y = 0 for move in S do if move == 'L' then x = x - 1 else if move == 'R' then x = x + 1 else if move == 'U' then y = y + 1 else if move == 'D' then y = y - 1 end if if x^2 + y^2 = R^2 then return true end if end for return false end procedure procedure reachCircumference (S, R): v = [] subsequence(S, "", v) for str in v: if checkSeq(str, R) return "yes" end if return "no" end procedure
In the following program, create all possible subsequences of the string S and check whether they reach the circumference of the circle.
#include <bits/stdc++.h> using namespace std; // Function to create all the possible subsequence of string S void subsequence(string S, string sub, vector<string> &vec){ // Base Case if (S.empty()) { vec.push_back(sub); return; } // Subsequence including the character subsequence(S.substr(1), sub + S[0], vec); // Subsequence excluding the character subsequence(S.substr(1), sub, vec); } // Function to check if a given sequence of steps lead to the circumference of the circle with radius R bool checkSeq(string S, int R){ // Initialising centre of circle as (0, 0) int x = 0, y = 0; for (char move : S) { if (move == 'L') { x -= 1; } else if (move == 'R') { x += 1; } else if (move == 'U') { y += 1; } else if (move == 'D') { y -= 1; } // Check to find if (x, y) lie on circumference using the circle equation if (x*x + y*y == R*R) { return true; } } return false; } // function to check if any subsequence of string S leads to any point on the circumference of the circle string reachCircumference(string S, int R){ vector <string> v; string sub = ""; // Storing all subsequence in vector v subsequence(S, sub, v); // Checking the condition for each subsequence for (auto str: v) { if(checkSeq(str, R)) { return "yes"; break; } } return "no"; } // Driver Code int main(){ string S = "RURDLR"; int R = 2; cout << reachCircumference(S, R) << endl; return 0; }
yes
An efficient way to solve this problem is to check whether the sum of the squares of x and y is equal to the square of the radius for any pair of x and y using (L, R, U or D).
First, we count the maximum number of occurrences of each step and check if any of them are equal to R. If not equal, then we check whether any number of pairs of L or R and U or D can result in a distance origin equal to R .
procedure reachCircumference (S, R) cL = 0 cR = 0 cD = 0 cU = 0 for move in S do if move == 'L' then x = x - 1 else if move == 'R' then x = x + 1 else if move == 'U' then y = y + 1 else if move == 'D' then y = y - 1 end if if x^2 + y^2 = R^2 then return true end if end for if max(max(cL, cR), max(cD, cU)) >= R return “yes” maxLR = max(cL, cR) maxUD = max(cU, cD) Initialise unordered map mp sq = R * R for i = 1 till i * i = sq if sq - i*i is not in the map if maxLR>= mp[sq - i * i] and maxUD >= i return “yes” end if if maxLR >= i && maxUD >= mp[sq - i * i] return “yes” end if end if end for return “no” end procedure
In the following program, we use a map to check whether there is a subsequence leading to the circumference of a circle.
#include <bits/stdc++.h> using namespace std; // Function to check if any subsequence of string S leads to any point on the circumference of the circle string reachCircumference (string S, int R){ // Counting total occurrenceof each L, R, U, D int cL = 0, cR = 0, cD = 0, cU = 0; for (char move : S) { if (move == 'L') { cL++; } else if (move == 'R') { cR++; } else if (move == 'U') { cU++; } else if (move == 'D') { cD++; } } // Checking for a path to circumference using only one type of move if (max(max(cL, cR), max(cD, cU)) >= R) { return "yes"; } int maxLR = max(cL, cR), maxUD = max(cU, cD); unordered_map<int, int> mp; int sq = R * R; for (int i = 1; i * i <= sq; i++) { mp[i * i] = i; if (mp.find(sq - i * i) != mp.end()) { // Checking if it is possible to reach (± mp[r_square - i*i], ± i) if (maxLR>= mp[sq - i * i] && maxUD >= i) return "yes"; // Checking if it is possible to reach (±i, ±mp[r_square-i*i]) if (maxLR >= i && maxUD >= mp[sq - i * i]) return "yes"; } } return "no"; } // Driver Code int main(){ string S = "RURDLR"; int R = 5; cout << reachCircumference(S, R) << endl; return 0; }
no
In summary, to find out if you can use a subsequence of steps in the string S to get the circumference of a circle centered at the origin, you can use any of the above methods. The second method is a faster method but uses extra space, while the first method is a brute force method that is not very efficient but easy to understand.
The above is the detailed content of Checks whether it is possible to reach any point on the circumference of a given circle from the origin. For more information, please follow other related articles on the PHP Chinese website!