C++ Rat in maze allowing multiple steps or jumps
Given an n*n grid maze. Our mouse appears in the upper left corner of the grid. Now the mouse can only move down or forward, and in this variant the mouse can make multiple jumps if and only if the block now has a non-zero value. The maximum jump that the mouse can make from the current cell is the number present in the cell, now your task is to find out if the mouse can reach the bottom right corner of the grid, for example -
Input : { { {1, 1, 1, 1}, {2, 0, 0, 2}, {3, 1, 0, 0}, {0, 0, 0, 1} }, Output : { {1, 1, 1, 1}, {0, 0, 0, 1}, {0, 0, 0, 0}, {0, 0, 0, 1} } Input : { {2, 1, 0, 0}, {2, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 1} } Output: Path doesn't exist
Ways to find the solution
In this approach we will use backtracking to keep track of every path the mouse can take now. If the mouse reaches its destination from any path, we return true for that path and then print that path. Otherwise, we print that the path does not exist.
Example
#include <bits/stdc++.h> using namespace std; #define N 4 // size of our grid bool solveMaze(int maze[N][N], int x, int y, // recursive function for finding the path int sol[N][N]){ if (x == N - 1 && y == N - 1) { // if we reached our goal we return true and mark our goal as 1 sol[x][y] = 1; return true; } if (x >= 0 && y >= 0 && x < N && y < N && maze[x][y]) { sol[x][y] = 1; // we include this index as a path for (int i = 1; i <= maze[x][y] && i < N; i++) { // as maze[x][y] denotes the number of jumps you can take //so we check for every jump in every direction if (solveMaze(maze, x + i, y, sol) == true) // jumping right return true; if (solveMaze(maze, x, y + i, sol) == true) // jumping downward return true; } sol[x][y] = 0; // if none are true then the path doesn't exist //or the path doesn't contain current cell in it return false; } return false; } int main(){ int maze[N][N] = { { 2, 1, 0, 0 }, { 3, 0, 0, 1 },{ 0, 1, 0, 1 }, { 0, 0, 0, 1 } }; int sol[N][N]; memset(sol, 0, sizeof(sol)); if(solveMaze(maze, 0, 0, sol)){ for(int i = 0; i < N; i++){ for(int j = 0; j < N; j++) cout << sol[i][j] << " "; cout << "\n"; } } else cout << "Path doesn't exist\n"; return 0; }
Output
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
Explanation of the above code
In the above method, we check every path it can generate from the current cell , when inspecting, we now mark the path as one. When our path reaches a dead end, we check if the dead end is our destination. Now, if that's not our destination, we backtrack, and when we backtrack, we mark the cell as 0 because that path is invalid, and that's how our code handles it.
Conclusion
In this tutorial we will solve a mouse problem in a maze, allowing for multiple steps or jumps. We also learned the C program for this problem and the complete method (general) to solve it. We can write the same program in other languages such as C, java, python and other languages. We hope you found this tutorial helpful.
The above is the detailed content of C++ Rat in maze allowing multiple steps or jumps. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and
