Table of Contents
Immutability and Uniqueness
Use object identifiers (OIDs) for efficient retrieval
Early Approaches and Challenges with OIDs
Home Database Mysql Tutorial Object Identification and Objects and Text

Object Identification and Objects and Text

Aug 31, 2023 pm 10:25 PM

Object Identification and Objects and Text

DBMS supports object-oriented data. It ensures direct correspondence between real-world objects and their representations in the database. This correspondence ensures that objects retain their integrity and identity. It enables easy identification and manipulation. Object Data Management System (ODMS) assigns unique identity to each independent object stored in the database.

This unique identity is achieved through a system-generated object identifier (OID). This OID serves as a unique value assigned to each object by the system. It is not visible to external users. However, the system uses it internally to ensure the unique identification of each object and to establish and manage references between objects. When needed, the system assigns the OID to a program variable of the appropriate type for operations involving the object.

Immutability and Uniqueness

Primary requirement for an Object Identifier (OID) in an Object Data Management System (ODMS) is immutability. It is crucial that the OID value assigned to a specific object remains unchanged, ensuring the preservation of the object's identity in the real world . ODMS must incorporate mechanisms for generating OIDs and enforcing their immutability. It is desirable for each OID to be unique and used only once. Even if an object is removed from the database, its OID should not be reassigned to another object.

To fulfill these requirements, OID should not depend on any attribute values ​​of the object. This is necessary because attribute values ​​may change or be corrected over time. In the relational model, each relation requires primary key. If the value of the primary key is altered, tuple will consider new identity. In different relations, real-world object may have different names for its key attributes. It can create challenges in determining if the keys represent the same real-world object. For example, the object identifier may be represented as "Emp_id" in one relation and as "Ssn" in another relation.

Use object identifiers (OIDs) for efficient retrieval

Object Identifier (OID) on the physical address of the object in storage is deemed inappropriate in a Database Management System (DBMS). This is because the physical address can change following a physical reorganization of the database. However, some early Object Data Management Systems (ODMSs) have employed the physical address as the OID in order to enhance the efficiency of object retrieval.

In order to adapt to changes in physical addresses, mechanisms involving indirect pointers can be used. This pointer is placed at the original address and provides the object's new physical location. However, in modern practice it is more common to assign long integers as OIDs. Subsequently, a hash table or similar data structure is used to map the OID value to the object's current physical address in storage. This approach ensures that the OID is not affected by any physical reorganization while still enabling efficient object retrieval.

Early Approaches and Challenges with OIDs

In early Object-Oriented (OO) data models, there was a requirement that all entities, including simple values ​​and complex objects, be represented as objects. Consequently, each basic value like an integer, string, or Boolean value was assigned an Object Identifier (OID). This approach allowed identical basic values ​​to possess different OIDs, which could be advantageous in certain situations. For instance, the integer value 50 could represent the weight in kilograms in one context and the age of a person in another context. By creating two distinct basic objects with separate OIDs, both objects could represent the integer value 50. However, while this approach held theoretical value, it proved impractical as it resulted in the generation of a large number of OIDs.

To address this limitation, most object-oriented database systems now support object and literal (or value) representations. Each object must have an immutable OID assigned to it to ensure its unique identification. In contrast, a literal value has no OID and simply represents its own value. Typically, literal values ​​are stored within the object and cannot be referenced by other objects. Furthermore, in many systems it is possible to create complex structured literal values ​​without a corresponding OID if desired.

The above is the detailed content of Object Identification and Objects and Text. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

When might a full table scan be faster than using an index in MySQL? When might a full table scan be faster than using an index in MySQL? Apr 09, 2025 am 12:05 AM

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Can I install mysql on Windows 7 Can I install mysql on Windows 7 Apr 08, 2025 pm 03:21 PM

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

Difference between clustered index and non-clustered index (secondary index) in InnoDB. Difference between clustered index and non-clustered index (secondary index) in InnoDB. Apr 02, 2025 pm 06:25 PM

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values ​​and pointers to data rows, and is suitable for non-primary key column queries.

What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? Mar 21, 2025 pm 06:28 PM

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

How do you handle large datasets in MySQL? How do you handle large datasets in MySQL? Mar 21, 2025 pm 12:15 PM

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

MySQL: Simple Concepts for Easy Learning MySQL: Simple Concepts for Easy Learning Apr 10, 2025 am 09:29 AM

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Apr 02, 2025 pm 07:05 PM

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

See all articles