Retrieve large selection by chunks in MySQL?
To retrieve a large selection in chunks, you need to use ORDER BY LIMIT. The syntax is as follows:
SELECT *FROM yourTableName ORDER BY yourColumnName LIMIT 0,10;
From the above syntax, you will get 10 rows from the table. In the above syntax, 0 represents the first row in the result set of the table, which means it is zero-based indexed. The second value of LIMIT represents the maximum number of rows that can be retrieved from the table.
If you want to get the rows after 10 to 30, then use the following syntax in LIMIT:
SELECT *FROM yourTableName ORDER BY yourColumnName LIMIT 10,20; //11 to 30
If you want another set of rows from 30 to 50, use LIMIT again :
SELECT *FROM yourTableName ORDER BY yourColumnName LIMIT 30 ,20; 31 to 50.
For this you need to use a temporary table. The syntax is as follows:
DROP TEMPORARY TABLE IF EXISTS yourTemporaryTableName; CREATE TEMPORARY TABLE yourTempTableName AS ( SELECT *FROM yourOriginalTableName ORDER BY LIMIT 0,100 );
If all records are in the temporary table, then use LIMIT as discussed above to get all records from the temporary table.
SELECT *FROM yourTemporaryTableName LIMIT 0,100; SELECT *FROM yourTemporaryTableName LIMIT 100,1000;
Now it's up to you to set the limit value. It is a good practice to delete temporary tables now. The query is as follows:
DROP TEMPORARY TABLE yourTemporaryTableName;
Let us demonstrate the above discussion. First create a table. The query to create the table is as follows:
mysql> create table getRecordsDemo -> ( -> Id int NOT NULL AUTO_INCREMENT, -> PRIMARY KEY(Id) -> ); Query OK, 0 rows affected (1.68 sec)
Use the insert command to insert some records into the table. The query is as follows:
mysql> insert into getRecordsDemo values(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(); Query OK, 738 rows affected (0.34 sec) Records: 738 Duplicates: 0 Warnings: 0
Now create a temporary table like the above table. The query to create the temporary table is as follows:
mysql> drop temporary table if exists TempRecord; Query OK, 0 rows affected, 1 warning (0.00 sec) mysql> create temporary table TempRecord -> as -> ( -> select * from getRecordsDemo order by Id limit 0,738 -> ); Query OK, 738 rows affected (0.03 sec) Records: 738 Duplicates: 0 Warnings: 0
Now you can use the LIMIT clause to get the results in chunks.
Case 1: The following query is used to get some records from the temporary table 'TempRecord':
mysql> select *from TempRecord limit 0,10;
The following is the output:
+----+ | Id | +----+ | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | +----+ 10 rows in set (0.00 sec)
Case 2: Query as follows to obtain the next set of records:
mysql> select *from TempRecord limit 10,20; +----+ | Id | +----+ | 11 | | 12 | | 13 | | 14 | | 15 | | 16 | | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 25 | | 26 | | 27 | | 28 | | 29 | | 30 | +----+ 20 rows in set (0.00 sec)
Case 3: Query as follows to obtain another set of records:
mysql> select *from TempRecord limit 30,20; +----+ | Id | +----+ | 31 | | 32 | | 33 | | 34 | | 35 | | 36 | | 37 | | 38 | | 39 | | 40 | | 41 | | 42 | | 43 | | 44 | | 45 | | 46 | | 47 | | 48 | | 49 | | 50 | +----+ 20 rows in set (0.00 sec)
The above is the detailed content of Retrieve large selection by chunks in MySQL?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
