How to use PHP to implement intelligent recommendation and personalized recommendation functions
Introduction:
In today’s Internet era, personalized recommendation systems have been widely used in various fields. Such as e-commerce, social media and news information, etc. Intelligent recommendation and personalized recommendation functions play an important role in improving user experience, increasing user stickiness and increasing conversion rate. This article will introduce how to use PHP to implement intelligent recommendation and personalized recommendation functions, and provide relevant code examples.
1. Principle of Intelligent Recommendation
Intelligent recommendation automatically recommends relevant content based on the user’s historical behavior and personal interests. It is mainly based on the following principles:
2. Intelligent recommendation implementation
In PHP, to implement intelligent recommendation and personalized recommendation functions, you can use a database to store user behavior data and item information, and use algorithms to perform recommendation calculations. The following are the general steps to implement the intelligent recommendation function:
CREATE TABLE `user_action` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `user_id` int(10) unsigned NOT NULL, `item_id` int(10) unsigned NOT NULL, `action_type` tinyint(4) NOT NULL, `action_time` datetime NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE TABLE `item_info` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `item_id` int(10) unsigned NOT NULL, `name` varchar(255) NOT NULL, `description` text NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
// 用户浏览商品 function userBrowseItem($user_id, $item_id) { // 添加用户浏览记录到数据库 $sql = "INSERT INTO user_action (user_id, item_id, action_type, action_time) VALUES ($user_id, $item_id, 1, NOW())"; // 执行SQL语句 } // 用户购买商品 function userBuyItem($user_id, $item_id) { // 添加用户购买记录到数据库 $sql = "INSERT INTO user_action (user_id, item_id, action_type, action_time) VALUES ($user_id, $item_id, 2, NOW())"; // 执行SQL语句 }
// 计算物品相似度 function calculateItemSimilarity($item_id_1, $item_id_2) { // 根据商品特征计算相似度 // 返回相似度值 }
// 根据用户行为数据进行推荐 function recommendItems($user_id) { // 获取用户的浏览、购买等行为数据 $sql = "SELECT item_id, action_type FROM user_action WHERE user_id = $user_id"; // 执行SQL语句,并根据用户的行为数据进行推荐计算 // 返回推荐结果 }
3. Personalized recommendations
Personalized recommendations are based on the user’s personal interests and preferences, recommending content related to their preferences. To achieve personalized recommendations, users' personal interest data can be obtained through questionnaires when users register or through user feedback. The following are the general steps to implement the personalized recommendation function:
CREATE TABLE `user_interest` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `user_id` int(10) unsigned NOT NULL, `interest` varchar(255) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
// 根据用户个性化数据进行推荐 function personalizedRecommendation($user_id) { // 获取用户的个性化数据 $sql = "SELECT interest FROM user_interest WHERE user_id = $user_id"; // 获取用户的个性化数据,并根据个性化数据进行推荐计算 // 返回个性化推荐结果 }
Conclusion:
This article introduces how to use PHP to implement intelligent recommendation and personalized recommendation functions. By collecting users' historical behavioral data and personalized data, and performing recommendation calculations based on recommendation algorithms, user experience can be improved, user stickiness and conversion rates can be increased. Although this article only provides a simple implementation method, through in-depth understanding and application of intelligent recommendation algorithms and personalized recommendation algorithms, a more accurate and effective recommendation system can be achieved.
The above is the detailed content of How to use PHP to implement intelligent recommendations and personalized recommendations. For more information, please follow other related articles on the PHP Chinese website!