Home > Backend Development > C++ > C program to find the minimum number of insertions to form a palindrome

C program to find the minimum number of insertions to form a palindrome

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Release: 2023-09-05 17:13:05
forward
1408 people have browsed it

C program to find the minimum number of insertions to form a palindrome

A palindrome is a string equal to its reverse. Given a string, we need to find the minimum number of inserted arbitrary characters required to make the string a palindrome. We will see three approaches: first the recursive approach, then we will memoize this solution, and finally, we will implement the dynamic programming approach.

Recursive method

Example

#include <stdio.h> // library for input and output
#include <limits.h> // library to get the integer limits 
#include <string.h> // library for strings 
// function to find the minimum of two number 
// as it is not present in the c language 
int findMin(int a, int b){ 
   if(a < b){
      return a;
   } else{
      return b;
   }
}
// creating the function to find the required answer we will make recursive calls to it 
int findAns(char str[], int start, int end){
   // base condition
   if (start > end){
      return INT_MAX;
   }
   else if(start == end){
      return 0;
   }
   else if (start == end - 1){
      if(str[start] == str[end]){
         return 0;
      }
      else return 1;
   }	
   // check if both start and end characters are the same make callson the basis of that 
   if(str[start] == str[end]){
      return findAns(str,start+1, end-1);
   } else{
      return 1+ findMin(findAns(str,start,end-1), findAns(str,start+1,end));
   }
}
// main function 
int main(){
   char str[] = "thisisthestring"; // given string
   printf("The minimum number of insertions required to form the palindrome is: %d", findAns(str,0,strlen(str)-1));
   return 0;
}
Copy after login

Output

The minimum number of insertions required to form the palindrome is: 8
Copy after login
Copy after login
Copy after login

Time and space complexity

The time complexity of the above code is O(2^N) because we make a selection for each insertion, where N is the size of the given string.

The space complexity of the above code is O(N), that is, it is used in recursive calls.

Memory method

Example

#include <stdio.h> // library for input and output
#include <limits.h> // library to get the integer limits 
#include <string.h> // library for strings 

int memo[1005][1005]; // array to store the recursion results 
// function to find the minimum of two number 
// as it is not present in the c language 
int findMin(int a, int b){ 
   if(a < b){
      return a;
   } else{
      return b;
   }
}
// creating the function to find the required answer we will make recursive calls to it 
int findAns(char str[], int start, int end){
   // base condition
   if (start > end){
      return INT_MAX;
   }
   else if(start == end){
      return 0;
   }
   else if (start == end - 1){
      if(str[start] == str[end]){
         return 0;
      }
      else return 1;
   }
   // if already have the result 
   if(memo[start][end] != -1){
      return memo[start][end];
   }	
   // check if both start and end characters are same make calls on basis of that 
    if(str[start] == str[end]){
      memo[start][end] =  findAns(str,start+1, end-1);
   } else{
        memo[start][end] =  1+ findMin(findAns(str,start,end-1), findAns(str,start+1,end));
   }
   return memo[start][end];
}
int main(){
   char str[] = "thisisthestring"; // given string	
   //Initializing the memo array 
   memset(memo,-1,sizeof(memo));
   printf("The minimum number of insertions required to form the palindrome is: %d", findAns(str,0,strlen(str)-1));	
   return 0;
}
Copy after login

Output

The minimum number of insertions required to form the palindrome is: 8
Copy after login
Copy after login
Copy after login

Time and space complexity

The time complexity of the above code is O(N^2) because we store the calculated results.

The space complexity of the above code is O(N^2) because we use extra space here.

Dynamic programming method

Example

#include <stdio.h> // library for input and output
#include <limits.h> // library to get the integer limits 
#include <string.h> // library for strings 
    
// function to find the minimum of two number 
// as it is not present in the c language 
int findMin(int a, int b){ 
   if(a < b){
      return a;
   } else{
      return b;
   }
}
// creating a function to find the required answer 
int findAns(char str[], int len){
   // creating the table and initialzing it 
   int memo[1005][1005]; 
   memset(memo,0,sizeof(memo));	
   // filling the table by traversing over the string 
   for (int i = 1; i < len; i++){
      for (int start= 0, end = i; end < len; start++, end++){
         if(str[start] == str[end]){
            memo[start][end] = memo[start+1][end-1];
         } else{
              memo[start][end] = 1 + findMin(memo[start][end-1], memo[start+1][end]);
         }
      }
   }
   // return the minimum numbers of interstion required for the complete string 
      return memo[0][len-1];
}
int main(){
   char str[] = "thisisthestring"; // given string	
   // calling to the function 
   printf("The minimum number of insertions required to form the palindrome is: %d", findAns(str, strlen(str)));	
   return 0;
}
Copy after login

Output

The minimum number of insertions required to form the palindrome is: 8
Copy after login
Copy after login
Copy after login

Time and space complexity

The time complexity of the above code is O(N^2) because we use a nested for loop here.

The space complexity of the above code is O(N^2) because we use extra space here.

in conclusion

In this tutorial, we implemented three methods to find the minimum number of insertions required to make a given string a palindrome. We implemented the recursive method and then memoized it. Finally, we implemented the tabular method or the dynamic programming method.

The above is the detailed content of C program to find the minimum number of insertions to form a palindrome. For more information, please follow other related articles on the PHP Chinese website!

source:tutorialspoint.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Issues
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template