Replace each node in a linked list with its surpasser count using C++
Given a linked list, we need to find an element in the given linked list that is greater than the right side of the current element. The count of these elements needs to be substituted into the value of the current node.
Let's take a linked list containing the following characters and replace each node with its surpasser count -
4 -> 6 -> 1 -> 4 -> 6 -> 8 -> 5 -> 8 -> 3
Start backward and traverse the linked list (so we don't need to worry about the current element on the left). Our data structure keeps track of the current element in sorted order. Replaces the current element in the sorted data structure with the total number of elements above it.
Through the recursive method, the linked list will be traversed backwards. Another option is PBDS. Using PBDS allows us to find elements that are strictly less than a certain key. We can add the current element and subtract it from the strictly smaller element.
PBDS does not allow duplicate elements. However, we need repeated elements to count. To make each entry unique, we will insert a pair in the PBDS (first = element, second = index). To find the total elements equal to the current element, we will use a hash map. A hash map stores the number of occurrences of each element (basic integer-to-integer mapping).
Example
The following is a C program to replace each node in a linked list with its transcendental number -
#include <iostream> #include <unordered_map> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define oset tree<pair<int, int>, null_type,less<pair<int, int>>, rb_tree_tag, tree_order_statistics_node_update> using namespace std; using namespace __gnu_pbds; class Node { public: int value; Node * next; Node (int value) { this->value = value; next = NULL; } }; void solve (Node * head, oset & os, unordered_map < int, int >&mp, int &count){ if (head == NULL) return; solve (head->next, os, mp, count); count++; os.insert ( { head->value, count} ); mp[head->value]++; int numberOfElements = count - mp[head->value] - os.order_of_key ({ head->value, -1 }); head->value = numberOfElements; } void printList (Node * head) { while (head) { cout << head->value << (head->next ? "->" : ""); head = head->next; } cout << "\n"; } int main () { Node * head = new Node (43); head->next = new Node (65); head->next->next = new Node (12); head->next->next->next = new Node (46); head->next->next->next->next = new Node (68); head->next->next->next->next->next = new Node (85); head->next->next->next->next->next->next = new Node (59); head->next->next->next->next->next->next->next = new Node (85); head->next->next->next->next->next->next->next->next = new Node (37); oset os; unordered_map < int, int >mp; int count = 0; printList (head); solve (head, os, mp, count); printList (head); return 0; }
Output
43->65->12->46->68->85->59->85->30 6->3->6->4->2->0->1->0->0
illustrate
So, for the first element, element = [65, 46, 68, 85, 59, 85], which is 6
The second element, element = [68, 85, 85] i.e. 3
And so on for all elements
in conclusion
This question requires a certain understanding of data structure and recursion. We need to lay out methods and then, based on observations and knowledge, derive data structures that meet our needs. If you liked this article, read more and stay tuned.
The above is the detailed content of Replace each node in a linked list with its surpasser count using C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.
