


How to implement gradient descent algorithm in Python to find local minima?
Gradient descent is an important optimization method in machine learning, used to minimize the loss function of the model. In layman's terms, it requires repeatedly changing the parameters of the model until the ideal value range that minimizes the loss function is found. The method works by taking tiny steps in the direction of the negative gradient of the loss function, or more specifically, along the path of steepest descent. The learning rate is a hyperparameter that regulates the trade-off between algorithm speed and accuracy, and it affects the size of the step size. Many machine learning methods, including linear regression, logistic regression, and neural networks, to name a few, employ gradient descent. Its main application is model training, where the goal is to minimize the difference between the expected and actual values of the target variable. In this article, we will look at implementing gradient descent in Python to find local minima.
Now it’s time to implement gradient descent in Python. Here's a basic description of how we implement it -
First, we import the necessary libraries.
Define its function and its derivatives.
Next, we will apply the gradient descent function.
After applying the function, we will set the parameters to find the local minimum,
Finally, we will plot the output.
Implementing Gradient Descent in Python
Import library
import numpy as np import matplotlib.pyplot as plt
Then we define the function f(x) and its derivative f'(x) -
def f(x): return x**2 - 4*x + 6 def df(x): return 2*x - 4
F(x) is the function that must be reduced and df is its derivative (x). The gradient descent method uses derivatives to guide itself toward the minimum by revealing the slope of the function along the way.
Then define the gradient descent function.
def gradient_descent(initial_x, learning_rate, num_iterations): x = initial_x x_history = [x] for i in range(num_iterations): gradient = df(x) x = x - learning_rate * gradient x_history.append(x) return x, x_history
The starting value of x, the learning rate and the required number of iterations are sent to the gradient descent function. To save the value of x after each iteration, it initializes x to its original value and generates an empty list. The method then performs gradient descent for the provided number of iterations, changing x in each iteration according to the equation x = x - learning rate * gradient. This function generates a list of x values for each iteration and the final value of x.
The gradient descent function can now be used to locate the local minimum of f(x) -
Example
initial_x = 0 learning_rate = 0.1 num_iterations = 50 x, x_history = gradient_descent(initial_x, learning_rate, num_iterations) print("Local minimum: {:.2f}".format(x))
Output
Local minimum: 2.00
In this figure, x is initially set to 0, the learning rate is 0.1, and 50 iterations are run. Finally, we publish the value of x, which should be close to the local minimum at x=2.
Plotting the function f(x) and the x value for each iteration allows us to see the gradient descent process in action -
Example
# Create a range of x values to plot x_vals = np.linspace(-1, 5, 100) # Plot the function f(x) plt.plot(x_vals, f(x_vals)) # Plot the values of x at each iteration plt.plot(x_history, f(np.array(x_history)), 'rx') # Label the axes and add a title plt.xlabel('x') plt.ylabel('f(x)') plt.title('Gradient Descent') # Show the plot plt.show()
Output
in conclusion
In summary, to find the local minimum of a function, Python utilizes an efficient optimization process called gradient descent. Gradient descent works by computing the derivative of a function at each step, repeatedly updating input values in the direction of steepest descent until the lowest value is reached. Implementing gradient descent in Python requires specifying the function to be optimized and its derivatives, initializing input values, and determining the learning rate and number of iterations of the algorithm. After optimization is complete, the method can be evaluated by tracing its steps to the minimum and seeing how it reaches that goal. Gradient descent is a useful technique in machine learning and optimization applications because Python can handle large data sets and complex functions.
The above is the detailed content of How to implement gradient descent algorithm in Python to find local minima?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

CentOS Installing Nginx requires following the following steps: Installing dependencies such as development tools, pcre-devel, and openssl-devel. Download the Nginx source code package, unzip it and compile and install it, and specify the installation path as /usr/local/nginx. Create Nginx users and user groups and set permissions. Modify the configuration file nginx.conf, and configure the listening port and domain name/IP address. Start the Nginx service. Common errors need to be paid attention to, such as dependency issues, port conflicts, and configuration file errors. Performance optimization needs to be adjusted according to the specific situation, such as turning on cache and adjusting the number of worker processes.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.
