Welsh-Powell plot coloring algorithm
Graphics coloring is a key issue in information technology and has wide applications in fields such as scheduling, register allocation, and map coloring. The Welsh-Powell algorithm is an efficient way to color a graph, ensuring that nearby vertices have a variety of shades while using fewer colors. In this article we will look at 2 ways to create the Welsh-Powell algorithm using the C algorithm.
usage instructions
Sequential vertex sorting
Maximum first vertex sorting
Sequential vertex sorting
In the first technique, colors are assigned to vertices in descending order of their degree. This technique ensures that vertices of greater extent that usually have more neighbors are colored first.
algorithm
Determine the level of each graph vertex.
Determine the degree of the vertices and sort them in descending order.
Set the assigned color for each vertex position in the array.
Repeat step 2 for the vertices in the order determined here.
Specify for each vertex the minimum color that is not yet used by its adjacent vertices.
Example
#include <iostream> #include <vector> #include <algorithm> using namespace std; // Graph structure struct Graph { int V; // Number of vertices vector<vector<int>> adj; // Adjacency list // Constructor Graph(int v) : V(v), adj(v) {} // Function to add an edge between two vertices void addEdge(int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } }; // Function to compare vertices based on weight bool compareWeights(pair<int, int> a, pair<int, int> b) { return a.second > b.second; } // Function to perform graph coloring using Welsh-Powell algorithm void graphColoring(Graph& graph) { int V = graph.V; vector<pair<int, int>> vertexWeights; // Assign weights to each vertex based on their degree for (int v = 0; v < V; v++) { int weight = graph.adj[v].size(); vertexWeights.push_back(make_pair(v, weight)); } // Sort vertices in descending order of weights sort(vertexWeights.begin(), vertexWeights.end(), compareWeights); // Array to store colors assigned to vertices vector<int> color(V, -1); // Assign colors to vertices in the sorted order for (int i = 0; i < V; i++) { int v = vertexWeights[i].first; // Find the smallest unused color for the current vertex vector<bool> usedColors(V, false); for (int adjVertex : graph.adj[v]) { if (color[adjVertex] != -1) usedColors[color[adjVertex]] = true; } // Assign the smallest unused color to the current vertex for (int c = 0; c < V; c++) { if (!usedColors[c]) { color[v] = c; break; } } } // Print the coloring result for (int v = 0; v < V; v++) { cout << "Vertex " << v << " is assigned color " << color[v] << endl; } } int main() { // Create a sample graph Graph graph(6); graph.addEdge(0, 1); graph.addEdge(0, 2); graph.addEdge(1, 2); graph.addEdge(1, 3); graph.addEdge(2, 3); graph.addEdge(3, 4); graph.addEdge(4, 5); // Perform graph coloring graphColoring(graph); return 0; }
Output
Vertex 0 is assigned color 2 Vertex 1 is assigned color 0 Vertex 2 is assigned color 1 Vertex 3 is assigned color 2 Vertex 4 is assigned color 0 Vertex 5 is assigned color 1
Maximum first vertex sorting
Similar to method one, the second method involves arranging the vertices in descending order according to their degrees. This approach colors the highest degree vertex first and then recursively colors its uncolored neighbors, rather than assigning colors sequentially.
algorithm
Determine the degree of each graph vertex.
Determine the degree of the vertices and sort them in descending order.
Set the assigned color for each vertex position in the array.
Start shading from the vertex of maximum degree.
Select the smallest color available for each neighbor of the currently uncolored vertex.
Example
#include <iostream> #include <vector> #include <algorithm> #include <unordered_set> using namespace std; class Graph { private: int numVertices; vector<unordered_set<int>> adjacencyList; public: Graph(int vertices) { numVertices = vertices; adjacencyList.resize(numVertices); } void addEdge(int src, int dest) { adjacencyList[src].insert(dest); adjacencyList[dest].insert(src); } int getNumVertices() { return numVertices; } unordered_set<int>& getNeighbors(int vertex) { return adjacencyList[vertex]; } }; void welshPowellLargestFirst(Graph graph) { int numVertices = graph.getNumVertices(); vector<int> colors(numVertices, -1); vector<pair<int, int>> largestFirst; for (int i = 0; i < numVertices; i++) { largestFirst.push_back(make_pair(graph.getNeighbors(i).size(), i)); } sort(largestFirst.rbegin(), largestFirst.rend()); int numColors = 0; for (const auto& vertexPair : largestFirst) { int vertex = vertexPair.second; if (colors[vertex] != -1) { continue; // Vertex already colored } colors[vertex] = numColors; for (int neighbor : graph.getNeighbors(vertex)) { if (colors[neighbor] == -1) { colors[neighbor] = numColors; } } numColors++; } // Print assigned colors for (int i = 0; i < numVertices; i++) { cout << "Vertex " << i << " - Color: " << colors[i] << endl; } } int main() { Graph graph(7); graph.addEdge(0, 1); graph.addEdge(0, 2); graph.addEdge(0, 3); graph.addEdge(1, 4); graph.addEdge(1, 5); graph.addEdge(2, 6); graph.addEdge(3, 6); welshPowellLargestFirst(graph); return 0; }
Output
Vertex 0 - Color: 0 Vertex 1 - Color: 0 Vertex 2 - Color: 1 Vertex 3 - Color: 1 Vertex 4 - Color: 0 Vertex 5 - Color: 0 Vertex 6 - Color: 1
in conclusion
This blog post analyzes two different methods of constructing the Welsh Powell diagram coloring technique using the C algorithm. Each method adopts a different strategy when sorting vertices and assigning colors, resulting in an efficient and optimized graph coloring method. By using these techniques, we can effectively reduce the number of colors required while ensuring that nearby vertices contain different colors. With its adaptability and simplicity, the Welsh-Powell algorithm remains a useful tool in a variety of graph shading applications.
The above is the detailed content of Welsh-Powell plot coloring algorithm. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.
