Home Backend Development Python Tutorial Python's success story in the field of intelligent robots

Python's success story in the field of intelligent robots

Sep 08, 2023 am 08:30 AM
machine learning automation Speech Recognition

Pythons success story in the field of intelligent robots

Python’s success story in the field of intelligent robots

Intelligent robots are one of the hot topics in the field of artificial intelligence in recent years, and their applications include home, medical, and education and many other fields. In the development process of intelligent robots, Python, as a simple, easy-to-use, powerful programming language, not only has advantages in algorithm implementation, but is also widely used in software development, hardware control, and data analysis. Next, we will introduce the success story of Python in the field of intelligent robots, with corresponding code examples.

  1. Voice recognition
    Voice recognition is one of the important functions of intelligent robots. It allows the robot to understand human language and respond accordingly. The speech recognition library SpeechRecognition in Python provides developers with a convenient way to implement speech recognition functions. The following is a simple sample code:
import speech_recognition as sr

# 创建一个语音识别对象
r = sr.Recognizer()

# 使用麦克风录音
with sr.Microphone() as source:
    print("请开始说话:")
    audio = r.listen(source)

    try:
        text = r.recognize_google(audio, language='zh-CN')
        print(f"你说的话是:{text}")
    except sr.UnknownValueError:
        print("无法识别语音")
    except sr.RequestError as e:
        print(f"请求发生错误:{e}")
Copy after login
  1. Face Recognition
    Face recognition technology is widely used in scenarios such as human-computer interaction and security authentication in intelligent robots. The face recognition library face_recognition in Python provides developers with convenient face recognition functions. Here is a simple sample code:
import face_recognition
import cv2

# 加载已知人脸图像并编码
known_image = face_recognition.load_image_file("known_person.jpg")
known_face_encoding = face_recognition.face_encodings(known_image)[0]

# 打开摄像头
video_capture = cv2.VideoCapture(0)

while True:
    # 读取摄像头图像
    ret, frame = video_capture.read()

    # 人脸检测
    face_locations = face_recognition.face_locations(frame)
    face_encodings = face_recognition.face_encodings(frame, face_locations)

    for face_encoding in face_encodings:
        # 人脸匹配
        matches = face_recognition.compare_faces([known_face_encoding], face_encoding)
        name = "Unknown"

        if True in matches:
            name = "Known Person"

        # 绘制人脸框及标签
        top, right, bottom, left = face_locations[0]
        cv2.rectangle(frame, (left, top), (right, bottom), (255, 0, 0), 2)
        cv2.putText(frame, name, (left, top - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 2)

    # 显示图像
    cv2.imshow('Video', frame)

    # 按下'q'键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 关闭摄像头
video_capture.release()
cv2.destroyAllWindows()
Copy after login
  1. Chatbot
    The natural language processing library NLTK and the machine learning library Scikit-learn in Python provide developers with the ability to build intelligent chatbots Tool of. The following is a simple sample code:
from nltk.chat.util import Chat, reflections

pairs = [
    [
        r"我的名字是(.*)",
        ["你好 %1, 有什么可以帮助你的吗?"]
    ],
    [
        r"你好|嗨|哈喽",
        ["你好!", "你好,有什么可以帮助你的吗?"]
    ],
    [
        r"退出",
        ["再见,祝你有美好的一天!"]
    ]
]

chatbot = Chat(pairs, reflections)
chatbot.converse()
Copy after login

Through the above examples, we can see the successful application of Python in the field of intelligent robots. Whether it is speech recognition, face recognition or chat robots, Python provides simple and easy-to-use libraries and tools, making it easier for developers to implement feature-rich intelligent robot systems. I believe that with the continuous development of Python and the further maturity of intelligent robot technology, Python will be more and more widely used in the field of intelligent robots.

The above is the detailed content of Python's success story in the field of intelligent robots. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Transparent! An in-depth analysis of the principles of major machine learning models! Transparent! An in-depth analysis of the principles of major machine learning models! Apr 12, 2024 pm 05:55 PM

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

Identify overfitting and underfitting through learning curves Identify overfitting and underfitting through learning curves Apr 29, 2024 pm 06:50 PM

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

The evolution of artificial intelligence in space exploration and human settlement engineering The evolution of artificial intelligence in space exploration and human settlement engineering Apr 29, 2024 pm 03:25 PM

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Outlook on future trends of Golang technology in machine learning Outlook on future trends of Golang technology in machine learning May 08, 2024 am 10:15 AM

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.

Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude May 30, 2024 pm 01:24 PM

MetaFAIR teamed up with Harvard to provide a new research framework for optimizing the data bias generated when large-scale machine learning is performed. It is known that the training of large language models often takes months and uses hundreds or even thousands of GPUs. Taking the LLaMA270B model as an example, its training requires a total of 1,720,320 GPU hours. Training large models presents unique systemic challenges due to the scale and complexity of these workloads. Recently, many institutions have reported instability in the training process when training SOTA generative AI models. They usually appear in the form of loss spikes. For example, Google's PaLM model experienced up to 20 loss spikes during the training process. Numerical bias is the root cause of this training inaccuracy,

See all articles