Table of Contents
Input and output scenarios
Use recursion
Example
Output
Use simple iteration
in conclusion
Home Backend Development C++ Number of integer solutions to the equation x = b*(sumofdigits(x) ^ a)+c

Number of integer solutions to the equation x = b*(sumofdigits(x) ^ a)+c

Sep 08, 2023 pm 06:01 PM

方程 x = b*(sumofdigits(x) ^ a)+c 的整数解的数量

Suppose three integers a, b and c are given, and there is an equation x = b* (sumofdigits(x)^a) c. Here, sumofdigits(x) is the sum of all digits in x. We will explore various methods in C in order to find all possible integral solutions that satisfy the equation.

Input and output scenarios

Given below are the values ​​of a, b and c. Different integral solutions satisfying the equation x = b* (sumofdigits(x)^a) c are given as output.

Input: a = 2, b = 2, c = -3
Output: 125, 447, 575
Copy after login

In the above case, a has a value of 2, b has a value of 2, c has a value of -3, and the possible values ​​of x are 125, 447, and 575.

Consider the number 125. The sum of its digits is 8. If you substitute this value into the equation b*(sum(x)^a) c, the answer is 125, which is the same as x equal. Therefore, it is a possible solution to Eq.

NOTE- The integral solution of this equation is in the range 1 to 109.

Use recursion

We can use recursive search to find the integral solution of a given equation.

We need to create a function called sumOfDigits() that will calculate the sum of the digits for any given number N.

  • Iterate over N numbers using the modulo operator and division operator.

  • The modulo operator is used to extract the last digit of N.

  • After each iteration, add the numbers stored in the variable sum one by one.

We create an integralSolutions() function to calculate the integral solutions.

  • It calculates the sum of the digits of x using the sumOfDigits function.

  • Next, using a for loop we raise the sum to the power a.

  • We evaluate the right side of the equation by multiplying b by power and adding c.

  • If the value of x is equal to the value on the right, it is considered an integer solution.

Next, we have the recursive function to search for integral solutions within a specified range.

Example

#include <iostream>
using namespace std;

int sumOfDigits(int N) {
   int sum = 0;
   while (N != 0) {
      sum += N % 10; // addition of the last digit of N
      N /= 10;
   }
   return sum;
}
void integralSolutions(int x, int a, int b, int c) {
   int sum = sumOfDigits(x);
   int power = 1;
   for (int j = 0; j < a; j++) {
      power *= sum;
   }
   int rightHandSide = b * power + c;
   if (x == rightHandSide) {
      std::cout << "Integral solution: " << x << std::endl;
   }
}
void recursion(int start, int end, int a, int b, int c) {
   if (start > end) {
      return;
   }
   integralSolutions(start, a, b, c);
   recursion(start + 1, end, a, b, c);
}
int main() {
   int a = 1, b = 3, c = 5;
   recursion(1, 100000, a, b, c);
   return 0;
}
Copy after login

Output

Integral solution: 11
Integral solution: 38
Copy after login

Segmentation Fault This error occurs when the end value of the specified range in a recursive search exceeds 100000. So you can't have x-values ​​beyond that.

Use simple iteration

If you want an integer solution for x greater than 100000, then we don't use recursion. Here we will use a simple iteration of x from 1 to 109 and compare it to the value on the right side of the equation.

Example

#include <iostream>
using namespace std;

int sumOfDigits(int N) {
   int sum = 0;
   while (N != 0) {
      sum += N % 10;
      N /= 10;
   }
   return sum;
}

bool integralSolution(int x, int a, int b, int c) {
   int sum = sumOfDigits(x);
   int power = 1;
   for (int i = 0; i < a; i++) {
      power *= sum;
   }
   int rightHandSide = b * power + c;
   return x == rightHandSide;
}

int main() {
   int a = 3, b = 5, c = 8;
   // x ranges from 1 to 109
   for (int x = 1; x <= 1000000000; x++) {
      if (integralSolution(x, a, b, c)) {
         std::cout << "Integral solution: " << x << std::endl;
      }
   }
   return 0;
}
Copy after login

Output

Integral solution: 53248
Integral solution: 148963
Copy after login

in conclusion

We explored methods of finding integral solutions to the equation x = b* (sumofdigits(x)^a) c, including using recursion or simple iteration. Recursive methods allow you to flexibly specify the range of solutions. However, it increases time complexity and may show segmentation fault for larger range of values, resulting in stack overflow.

Iterative methods are efficient in terms of time complexity and memory usage. However, it offers limited flexibility and more complex code. Therefore, both methods have their own advantages and disadvantages. Depending on your needs, you can choose any of the methods.

The above is the detailed content of Number of integer solutions to the equation x = b*(sumofdigits(x) ^ a)+c. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C language data structure: data representation and operation of trees and graphs C language data structure: data representation and operation of trees and graphs Apr 04, 2025 am 11:18 AM

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth behind the C language file operation problem The truth behind the C language file operation problem Apr 04, 2025 am 11:24 AM

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

What are the basic requirements for c language functions What are the basic requirements for c language functions Apr 03, 2025 pm 10:06 PM

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values ​​to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

Concept of c language function Concept of c language function Apr 03, 2025 pm 10:09 PM

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

Function name definition in c language Function name definition in c language Apr 03, 2025 pm 10:03 PM

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language multithreaded programming: a beginner's guide and troubleshooting C language multithreaded programming: a beginner's guide and troubleshooting Apr 04, 2025 am 10:15 AM

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

See all articles