Image classification using JavaScript
The meaning of image classification is to extract as much information as possible from the image. For example, when you upload an image to Google Photos, it extracts information from the image and suggests a location based on that information.
We can use OpenCV to detect every tiny information in the image and predict the image.
Training and testing a model from scratch using JavaScript requires a lot of effort and requires the right dataset containing different images. So, in this tutorial, we will use the pre-trained model of ml5.js to classify images.
ml5.js library contains various pre-trained models to make the developer's life easier. Additionally, it uses the browser's GPU to perform mathematical operations, making it more efficient.
grammar
Users can use the ml5.js library to classify images according to the following syntax.
image_classifier.predict(image, function (err, outputs) { if (err) { return alert(err); } else { output.innerText = outputs[0].label; } });
In the above syntax, "image_classifier" is a pre-trained image classification model imported from the ml5.js library. We call the "predict" method by passing the image as the first parameter and the callback function as the second parameter. In the callback function we get the output or error.
step
Step 1 - Use CDN to add the "ml5.js" library in the web page code.
Step 2 - Add input to upload files and categorize buttons.
Step 3 - In JavaScript, access the required HTML elements and "MobileNet" model from ml5.js. In addition, the modelLoad() function is executed after the model is loaded.
Step 4 - After that, whenever the user uploads an image, the event is triggered and the image is read in the callback function. Also, display the image on the screen.
Step 5 - When the user presses the classify image button, use the image classifier's prediction method to predict information about the image.
Example 1
In the example below, we add the "ml5.js" library to the
section via CDN. After that, whenever the user uploads an image, we read it and display it on the screen. Next, we use a prediction method to extract features from the image when the user presses the classification button. In the output, the user can display information about the image below the image.<html> <head> <script src="https://unpkg.com/ml5@latest/dist/ml5.min.js"></script> </head> <body> <h2>Creating the <i> Image classifier </i> using the ml5.js in JavaScript.</h2> <h4 id = "content"> Wait until model loads. </h4> <input type = "file" name = "Image" id = "upload_image" accept = "jpg,jpeg,png"> <br> <br> <img src = "" class = "image" id = "show_image" width = "300px" height = "300px"> <br> <button class = "button" id = "triggerClassify"> Classify the image </button> <br> <h2 id = "output"> </h2> <script> window.onload = function () { // access all HTML elements and image classifier const image_classifier = ml5.imageClassifier("MobileNet", modelLoaded); const triggerClassify = document.getElementById("triggerClassify"); const upload_image = document.getElementById("upload_image"); const show_image = document.getElementById("show_image"); const output = document.getElementById("output"); // when the model is loaded, show the message function modelLoaded() { let content = document.getElementById("content"); content.innerText = "Model is loaded! Now, test it by uploading the image."; } // When the user uploads the image, show it on the screen upload_image.onchange = function () { if (this.files && this.files[0]) { // using FileReader to read the image var reader = new FileReader(); reader.onload = function (e) { show_image.src = e.target.result; }; reader.readAsDataURL(this.files[0]); } }; // classify the image when the user clicks the button triggerClassify.onclick = function (e) { // predict the image using the model image_classifier.predict(show_image, function (err, outputs) { if (err) { return err; } else { // show the output output.innerText = outputs[0].label; } }); }; } </script> </body> </html>
Example
In the example below, the user can paste an image link into the input field. After that, whenever they press the get image button, it will display the image on the web page. Next, when the user clicks the Classify Images button, they can see the output containing the image information on the screen.
<html> <head> <script src="https://unpkg.com/ml5@latest/dist/ml5.min.js"></script> </head> <body> <h2>Creating the <i> Image classifier </i> using the ml5.js in JavaScript.</h2> <h4 id = "content"> Wait until model loads. </h4> <input type = "text" id = "link_input" placeholder = "Paste image link here"> <button id = "fetch_image"> Fetch Image </button> <br> <br> <img src = "" id = "show_image" width = "300px" height = "300px" crossorigin = "anonymous"> <img src = "" class = "image" id = "imageView"> <br> <button class = "button" id = "triggerClassify"> Classify the image </button> <br> <h2 id = "output"> </h2> <script> window.onload = function () { // access all HTML elements and image classifier const image_classifier = ml5.imageClassifier("MobileNet", modelLoaded); const triggerClassify = document.getElementById("triggerClassify"); let link_input = document.getElementById("link_input"); const show_image = document.getElementById("show_image"); const output = document.getElementById("output"); // when the model is loaded, show the message function modelLoaded() { let content = document.getElementById("content"); content.innerText = "Model is loaded! Now, test it by uploading the image."; } fetch_image.onclick = function (e) { let link = link_input.value; console.log(link); if (link != null && link != undefined) { show_image.src = link; } }; triggerClassify.onclick = function (e) { image_classifier.predict(show_image, function (err, outputs) { if (err) { console.error(err); } else { output.innerText = outputs[0].label; } }); }; } </script> </body> </html>
Users learned to classify images using a pre-trained model in JavaScript. We use “ml5.js” library to extract image features. We can classify images using real-life image classification. Additionally, there are many other use cases for image classification.
The above is the detailed content of Image classification using JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Frequently Asked Questions and Solutions for Front-end Thermal Paper Ticket Printing In Front-end Development, Ticket Printing is a common requirement. However, many developers are implementing...

There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

How to merge array elements with the same ID into one object in JavaScript? When processing data, we often encounter the need to have the same ID...

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

In-depth discussion of the root causes of the difference in console.log output. This article will analyze the differences in the output results of console.log function in a piece of code and explain the reasons behind it. �...

Discussion on the realization of parallax scrolling and element animation effects in this article will explore how to achieve similar to Shiseido official website (https://www.shiseido.co.jp/sb/wonderland/)...

JavaScript can be run in PowerPoint, and can be implemented by calling external JavaScript files or embedding HTML files through VBA. 1. To use VBA to call JavaScript files, you need to enable macros and have VBA programming knowledge. 2. Embed HTML files containing JavaScript, which are simple and easy to use but are subject to security restrictions. Advantages include extended functions and flexibility, while disadvantages involve security, compatibility and complexity. In practice, attention should be paid to security, compatibility, performance and user experience.

Learning JavaScript is not difficult, but it is challenging. 1) Understand basic concepts such as variables, data types, functions, etc. 2) Master asynchronous programming and implement it through event loops. 3) Use DOM operations and Promise to handle asynchronous requests. 4) Avoid common mistakes and use debugging techniques. 5) Optimize performance and follow best practices.
