Machine learning (ML) has revolutionized industries by enabling computers to learn and predict based on patterns and data. Traditionally, machine learning models are built and executed on servers or high-performance machines. However, as web technology advances, it is now possible to build and deploy ML models directly in the browser using JavaScript.
In this article, we’ll explore the exciting world of JavaScript machine learning and learn how to build ML models that can run in the browser.
Machine learning is a subset of artificial intelligence (AI) that focuses on creating models that can learn from data and make predictions or decisions. There are two main types of machine learning: supervised learning and unsupervised learning.
Supervised learning involves training a model on labeled data, where the input features and corresponding output values are known. The model learns patterns from labeled data to make predictions on new, unseen data.
Unsupervised learning, on the other hand, deals with unlabeled data. The model discovers hidden patterns and structures in data without any predefined labels.
To get started with JavaScript machine learning, follow these steps -
Node.js is a JavaScript runtime environment that allows us to run JavaScript code outside of a web browser. It provides the tools and libraries needed to use TensorFlow.js.
After installing Node.js, open your preferred code editor and create a new directory for your ML project. Navigate to the project directory using the command line or terminal.
In the command line or terminal, run the following command to initialize the new Node.js project -
npm init -y
This command creates a new package.json file for managing project dependencies and configuration.
To install TensorFlow.js, run the following command in the command line or terminal -
npm install @tensorflow/tfjs
Now that your project is set up and TensorFlow.js is installed, you can start building machine learning models in the browser. You can create a new JavaScript file, import TensorFlow.js, and use its API to define, train an ML model, and make predictions.
Let’s dive into some code examples to learn how to use TensorFlow.js and build machine learning models in JavaScript.
Linear regression is a supervised learning algorithm used to predict continuous output values based on input features.
Let’s see how to implement linear regression using TensorFlow.js.
// Import TensorFlow.js library import * as tf from '@tensorflow/tfjs'; // Define input features and output values const inputFeatures = tf.tensor2d([[1], [2], [3], [4], [5]], [5, 1]); const outputValues = tf.tensor2d([[2], [4], [6], [8], [10]], [5, 1]); // Define the model architecture const model = tf.sequential(); model.add(tf.layers.dense({ units: 1, inputShape: [1] })); // Compile the model model.compile({ optimizer: 'sgd', loss: 'meanSquaredError' }); // Train the model model.fit(inputFeatures, outputValues, { epochs: 100 }).then(() => { // Make predictions const predictions = model.predict(inputFeatures); // Print predictions predictions.print(); });
In this example, we first import the TensorFlow.js library. Then, we define the input features and output values as tensors. Next, we create a sequential model and add a dense layer with one unit. We compile the model using the "sgd" optimizer and the "meanSquaredError" loss function. Finally, we train the model for 100 epochs and make predictions on the input features. The predicted output values are printed to the console.
Tensor [2.2019906], [4.124609 ], [6.0472274], [7.9698458], [9.8924646]]
Sentiment analysis is a popular application of machine learning that involves analyzing text data to determine the emotion or emotional tone expressed in the text. We can use TensorFlow.js to build a sentiment analysis model that predicts whether a given text has positive or negative sentiment.
Consider the code shown below.
// Import TensorFlow.js library import * as tf from '@tensorflow/tfjs'; import '@tensorflow/tfjs-node'; // Required for Node.js environment // Define training data const trainingData = [ { text: 'I love this product!', sentiment: 'positive' }, { text: 'This is a terrible experience.', sentiment: 'negative' }, { text: 'The movie was amazing!', sentiment: 'positive' }, // Add more training data... ]; // Prepare training data const texts = trainingData.map(item => item.text); const labels = trainingData.map(item => (item.sentiment === 'positive' ? 1 : 0)); // Tokenize and preprocess the texts const tokenizedTexts = texts.map(text => text.toLowerCase().split(' ')); const wordIndex = new Map(); let currentIndex = 1; const sequences = tokenizedTexts.map(tokens => { return tokens.map(token => { if (!wordIndex.has(token)) { wordIndex.set(token, currentIndex); currentIndex++; } return wordIndex.get(token); }); }); // Pad sequences const maxLength = sequences.reduce((max, seq) => Math.max(max, seq.length), 0); const paddedSequences = sequences.map(seq => { if (seq.length < maxLength) { return seq.concat(new Array(maxLength - seq.length).fill(0)); } return seq; }); // Convert to tensors const paddedSequencesTensor = tf.tensor2d(paddedSequences); const labelsTensor = tf.tensor1d(labels); // Define the model architecture const model = tf.sequential(); model.add(tf.layers.embedding({ inputDim: currentIndex, outputDim: 16, inputLength: maxLength })); model.add(tf.layers.flatten()); model.add(tf.layers.dense({ units: 1, activation: 'sigmoid' })); // Compile the model model.compile({ optimizer: 'adam', loss: 'binaryCrossentropy', metrics: ['accuracy'] }); // Train the model model.fit(paddedSequencesTensor, labelsTensor, { epochs: 10 }).then(() => { // Make predictions const testText = 'This product exceeded my expectations!'; const testTokens = testText.toLowerCase().split(' '); const testSequence = testTokens.map(token => { if (wordIndex.has(token)) { return wordIndex.get(token); } return 0; }); const paddedTestSequence = testSequence.length < maxLength ? testSequence.concat(new Array(maxLength - testSequence.length).fill(0)) : testSequence; const testSequenceTensor = tf.tensor2d([paddedTestSequence]); const prediction = model.predict(testSequenceTensor); const sentiment = prediction.dataSync()[0] > 0.5 ? 'positive' : 'negative'; // Print the sentiment prediction console.log(`The sentiment of "${testText}" is ${sentiment}.`); });
Epoch 1 / 10 eta=0.0 ========================================================================> 14ms 4675us/step - acc=0.00 loss=0.708 Epoch 2 / 10 eta=0.0 ========================================================================> 4ms 1428us/step - acc=0.667 loss=0.703 Epoch 3 / 10 eta=0.0 ========================================================================> 5ms 1733us/step - acc=0.667 loss=0.697 Epoch 4 / 10 eta=0.0 ========================================================================> 4ms 1419us/step - acc=0.667 loss=0.692 Epoch 5 / 10 eta=0.0 ========================================================================> 6ms 1944us/step - acc=0.667 loss=0.686 Epoch 6 / 10 eta=0.0 ========================================================================> 5ms 1558us/step - acc=0.667 loss=0.681 Epoch 7 / 10 eta=0.0 ========================================================================> 5ms 1513us/step - acc=0.667 loss=0.675 Epoch 8 / 10 eta=0.0 ========================================================================> 3ms 1057us/step - acc=1.00 loss=0.670 Epoch 9 / 10 eta=0.0 ========================================================================> 5ms 1745us/step - acc=1.00 loss=0.665 Epoch 10 / 10 eta=0.0 ========================================================================> 4ms 1439us/step - acc=1.00 loss=0.659 The sentiment of "This product exceeded my expectations!" is positive.
The above is the detailed content of JavaScript Machine Learning: Build ML Models in the Browser. For more information, please follow other related articles on the PHP Chinese website!