Translate the following using C++: Interval sum query without updates
In this article, we will be given an array of size n, which is an integer. We will then calculate the sum of elements from index L to index R and perform multiple queries, or we need to calculate the sum of the given range [L, R]. For example -
Input : arr[] = {1, 2, 3, 4, 5} L = 1, R = 3 L = 2, R = 4 Output : 9 12 Input : arr[] = {1, 2, 3, 4, 5} L = 0, R = 4 L = 1, R = 2 Output : 15 5
Methods to find solution
There are two solutions to this problem. The first is through brute force methods and prefix sum (efficient) methods.
Brute Force Method
In this method we will iterate over the given range and print out the sum.
Example
#include<bits/stdc++.h> using namespace std; int main() { int arr[] = {1, 2, 3, 4, 5}; int n = sizeof(arr)/sizeof(int); // size of given array. int L1 = 1, R1 = 3; int L2 = 2, R2 = 4; int sum = 0; for(int i = L1; i <= R1; i++) // traversing through the first range. sum += arr[i]; cout << sum << "\n"; sum = 0; for(int i = L2; i <= R2; i++) // traversing through the second range. sum += arr[i]; cout << sum << "\n"; }
Output
9 12
Explanation of the above code
In this method, we just iterate over the given range; in this case Next, this program is good because its search time complexity is O(N), where N is the size of the given array. Nonetheless, things change when we are given multiple queries Q, then our complexity becomes O(N*Q), where Q is the number of queries and N is the size of the given array. Unfortunately, this time complexity cannot handle higher constraints, so now we will look at an efficient method for higher constraints.
Efficient method
In this method we will create a new array called prefix which will serve as our prefix and array and then we answer the sum of the given range.
Example
#include<bits/stdc++.h> using namespace std; int main() { int arr[] = {1, 2, 3, 4, 5}; int n = sizeof(arr)/sizeof(int); // size of given array. int L1 = 1, R1 = 3; int L2 = 2, R2 = 4; int sum = 0; int prefix[n]; for(int i = 0; i < n; i++){ sum += arr[i]; prefix[i] = sum; } if(L1) // to avoid segmentation fault cout << prefix[R1] - prefix[L1 - 1] << "\n"; else cout << prefix[R1] << "\n"; if(L2) // avoiding segmentation fault. cout << prefix[R2] - prefix[L2 - 1] << "\n"; else cout << prefix[R2] << "\n"; }
Output
9 12
Explanation of the above code
In this method, we store the prefix and value in a file called prefix in the array. Now, this array makes our program very efficient because it gives us a search time complexity of O(1), which is the best complexity you can get, so when we are given Q queries, we The search time complexity becomes O(Q), where Q is the number of queries.
Conclusion
In this article, we solved a problem of finding ranges and queries without updates using prefixes and arrays. We also learned a C program for this problem and a complete solution (common and efficient). We can write the same program in other languages like C, Java, Python and others. Hope you found this article helpful.
The above is the detailed content of Translate the following using C++: Interval sum query without updates. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

Although C and C# have similarities, they are completely different: C is a process-oriented, manual memory management, and platform-dependent language used for system programming; C# is an object-oriented, garbage collection, and platform-independent language used for desktop, web application and game development.
