C program for mice in the maze - backtracking-2
The rat in the maze is also a common problem using backtracking. I
A maze is a two-dimensional matrix in which some cells are blocked. One of the cells is the source cell and we have to start from there. Another of these is the destination, the place we must get to. We have to find a path from source to destination without entering any blocked cells. A picture of the unsolved maze is shown below.
This is the solution.
To solve this puzzle, we first start from the source unit and move in the direction where the path is not blocked. If the path taken leads us to our destination, the puzzle is solved. Otherwise, we will come back and change the direction of the path we are on. We will implement the same logic in code as well.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
Explanation
First, we will make a matrix to represent the maze, the elements of the matrix will be 0 or 1. 1 means blocked cells and 0 means cells we can move. The matrix for the maze shown above is as follows:
1 2 3 4 5 |
|
Now, we will make another matrix of the same dimensions to store the solution. Its elements will also be 0 or 1. 1 will represent the cells in our path and the remaining cells will be 0. The matrix representing the solution is:
1 2 3 4 5 |
|
So, we now have our matrix. Next, we will find the path from the start cell to the target cell, the steps we will take are as follows:
Check the current cell, if it is the target cell, then The puzzle is solved.
If not, try moving down and see if you can move to the next cell (to move to a cell, it must be empty and not in the path).
If you can move to the next cell, continue moving along the path to the next lower cell.
If not, try moving to the right. If the right side is blocked or occupied, move up.
Similarly, if moving up is not possible, we will simply move to the left cell.
If movement is not possible in any of the four directions (down, right, up or left), simply go back and change the current path (backtracking).
So, to summarize, we try to move from the current cell to other cells (down, right, up and left) and if no movement is possible, return and The direction of the path is changed to another cell.
printsolution → This function simply prints the solution matrix.
solvemaze → This is the function that actually implements the backtracking algorithm. First, we check if our cell is the target cell, if so (r==SIZE-1) and (c==SIZE-1). If it's the target cell, our puzzle has been solved. If not, then we check if it is a valid mobile cell. A valid cell must be in the matrix, i.e. the index must be between 0 and SIZE-1, r>=0 && c>=0 && r
Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
The above is the detailed content of C program for mice in the maze - backtracking-2. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.
