Table of Contents
grammar
algorithm
Joint operation
Find operation
Method 1: Rank-based merging and path compression
Example
Output
Method 2: Size-based merging with size and path compression
in conclusion
Home Backend Development C++ Introduction to disjoint set data structure or union-find algorithm

Introduction to disjoint set data structure or union-find algorithm

Sep 11, 2023 pm 03:13 PM
data structure disjoint sets Union-find algorithm

Introduction to disjoint set data structure or union-find algorithm

The disjoint set information structure, also known as the union search algorithm, is probably a fundamental concept in computer science that provides an effective method for solving problems related to allocation and networking . It is particularly valuable for solving problems involving sets of components and determining their connections. In this article, we will look at language constructs, algorithms, and two unique ways to implement disjoint set information structures in C. We will also provide fully executable code examples illustrating these methods.

grammar

Before we delve into the algorithm, let’s familiarize ourselves with the syntax used in the following code examples -

// Create a disjoint set
DisjointSet ds(n);

// Perform union operation
ds.unionSets(a, b);

// Find the representative of a set
ds.findSet(x);
Copy after login

algorithm

Utilizing disjoint data structures can be very useful when dealing with multiple disjoint collections. Each individual grouping is assigned a specific representative to characterize it. The starting point involves each component forming its own isolated set, which corresponds to its respective representative (which also happens to be itself). The two main operations performed on disjoint sets are union and search.

Joint operation

  • Find the representatives of the two sets to be merged.

  • If the representatives are different, make one representative point to the other, effectively merging the sets.

  • If the representatives are the same, the sets have been merged and no further action is required.

Find operation

  • Given an element, find the representative of the set it belongs to.

  • Follow the parent pointer until it reaches the representative node.

  • Return the delegate as the result.

Method 1: Rank-based merging and path compression

An effective way to implement disjoint set data structures is to use rank-wise union and path compression techniques.

In this method, each collection has an associated rank, which is initially set to 0.

When performing a union operation between two sets, the higher-ranked set is given priority and the lower-ranked set is merged. If two sets have similar ranks, one must arbitrarily choose which set contains whom. In either case, once merged into a new set, its rank increases by 1. Additionally, to speed up lookup operations and reduce time complexity, path compression helps flatten the tree structure during these operations.

The Chinese translation of

Example

is:

Example

#include <iostream>
#include <vector>

class DisjointSet {
   std::vector<int> parent;
   std::vector<int> rank;
    
public:
   DisjointSet(int n) {
      parent.resize(n);
      rank.resize(n, 0);
      for (int i = 0; i < n; ++i)
         parent[i] = i;
   }
    
   int findSet(int x) {
      if (parent[x] != x)
         parent[x] = findSet(parent[x]);
      return parent[x];
   }
    
   void unionSets(int x, int y) {
      int xRoot = findSet(x);
      int yRoot = findSet(y);
        
      if (xRoot == yRoot)
         return;
        
      if (rank[xRoot] < rank[yRoot])
         parent[xRoot] = yRoot;
      else if (rank[xRoot] > rank[yRoot])
         parent[yRoot] = xRoot;
      else {
         parent[yRoot] = xRoot;
         rank[xRoot]++;
      }
   }
};

int main() {
   // Example usage of DisjointSet
   int n = 5;  // Number of elements

   DisjointSet ds(n);

   ds.unionSets(0, 1);
   ds.unionSets(2, 3);
   ds.unionSets(3, 4);

   std::cout << ds.findSet(0) << std::endl;  
   std::cout << ds.findSet(2) << std::endl;  

   return 0;
}
Copy after login

Output

0
2
Copy after login
Copy after login

Method 2: Size-based merging with size and path compression

Another way to deal with disjoint set data structures is to use merge-by-size and path compression techniques.

  • In this method, each collection has an associated size, initially set to 1.

  • In a union operation, smaller sets are merged into larger sets.

  • The size of the result set will be updated accordingly.

  • Apply path compression during the seek operation to flatten the tree structure, similar to the previous method.

The Chinese translation of

Example

is:

Example

#include <iostream>
#include <vector>

class DisjointSet {
   std::vector<int> parent;
   std::vector<int> size;
    
public:
   DisjointSet(int n) {
      parent.resize(n);
      size.resize(n, 1);
      for (int i = 0; i < n; ++i)
         parent[i] = i;
   }
    
   int findSet(int x) {
      if (parent[x] != x)
         parent[x] = findSet(parent[x]);
      return parent[x];
   }
    
   void unionSets(int x, int y) {
      int xRoot = findSet(x);
      int yRoot = findSet(y);
        
      if (xRoot == yRoot)
         return;
        
      if (size[xRoot] < size[yRoot]) {
         parent[xRoot] = yRoot;
         size[yRoot] += size[xRoot];
      }
      else {
         parent[yRoot] = xRoot;
         size[xRoot] += size[yRoot];
      }
   }
};

int main() {
   // Example usage of DisjointSet
   int n = 5;  // Number of elements

   DisjointSet ds(n);

   ds.unionSets(0, 1);
   ds.unionSets(2, 3);
   ds.unionSets(3, 4);

   std::cout << ds.findSet(0) << std::endl;  
   std::cout << ds.findSet(2) << std::endl;  
   return 0;
}
Copy after login

Output

0
2
Copy after login
Copy after login

in conclusion

The disjoint set data structure or union search algorithm is a powerful tool for solving problems involving sets and connectivity. This article extensively studies C's disjoint set data structure syntax and its algorithms. To extend our understanding, we provide readers with two unique approaches - ranking-based union combined with path compression, and size-based union via size plus path compression. By understanding and implementing these methods, you can effectively solve a variety of problems that require tracking disjoint sets.

The above is the detailed content of Introduction to disjoint set data structure or union-find algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Compare complex data structures using Java function comparison Compare complex data structures using Java function comparison Apr 19, 2024 pm 10:24 PM

When using complex data structures in Java, Comparator is used to provide a flexible comparison mechanism. Specific steps include: defining the comparator class, rewriting the compare method to define the comparison logic. Create a comparator instance. Use the Collections.sort method, passing in the collection and comparator instances.

Java data structures and algorithms: in-depth explanation Java data structures and algorithms: in-depth explanation May 08, 2024 pm 10:12 PM

Data structures and algorithms are the basis of Java development. This article deeply explores the key data structures (such as arrays, linked lists, trees, etc.) and algorithms (such as sorting, search, graph algorithms, etc.) in Java. These structures are illustrated through practical examples, including using arrays to store scores, linked lists to manage shopping lists, stacks to implement recursion, queues to synchronize threads, and trees and hash tables for fast search and authentication. Understanding these concepts allows you to write efficient and maintainable Java code.

In-depth understanding of reference types in Go language In-depth understanding of reference types in Go language Feb 21, 2024 pm 11:36 PM

Reference types are a special data type in the Go language. Their values ​​do not directly store the data itself, but the address of the stored data. In the Go language, reference types include slices, maps, channels, and pointers. A deep understanding of reference types is crucial to understanding the memory management and data transfer methods of the Go language. This article will combine specific code examples to introduce the characteristics and usage of reference types in Go language. 1. Slices Slices are one of the most commonly used reference types in the Go language.

PHP data structure: The balance of AVL trees, maintaining an efficient and orderly data structure PHP data structure: The balance of AVL trees, maintaining an efficient and orderly data structure Jun 03, 2024 am 09:58 AM

AVL tree is a balanced binary search tree that ensures fast and efficient data operations. To achieve balance, it performs left- and right-turn operations, adjusting subtrees that violate balance. AVL trees utilize height balancing to ensure that the height of the tree is always small relative to the number of nodes, thereby achieving logarithmic time complexity (O(logn)) search operations and maintaining the efficiency of the data structure even on large data sets.

Full analysis of Java collection framework: dissecting data structure and revealing the secret of efficient storage Full analysis of Java collection framework: dissecting data structure and revealing the secret of efficient storage Feb 23, 2024 am 10:49 AM

Overview of Java Collection Framework The Java collection framework is an important part of the Java programming language. It provides a series of container class libraries that can store and manage data. These container class libraries have different data structures to meet the data storage and processing needs in different scenarios. The advantage of the collection framework is that it provides a unified interface, allowing developers to operate different container class libraries in the same way, thereby reducing the difficulty of development. Data structures of the Java collection framework The Java collection framework contains a variety of data structures, each of which has its own unique characteristics and applicable scenarios. The following are several common Java collection framework data structures: 1. List: List is an ordered collection that allows elements to be repeated. Li

Learn the secrets of Go language data structures in depth Learn the secrets of Go language data structures in depth Mar 29, 2024 pm 12:42 PM

In-depth study of the mysteries of Go language data structure requires specific code examples. As a concise and efficient programming language, Go language also shows its unique charm in processing data structures. Data structure is a basic concept in computer science, which aims to organize and manage data so that it can be accessed and manipulated more efficiently. By in-depth learning the mysteries of Go language data structure, we can better understand how data is stored and operated, thereby improving programming efficiency and code quality. 1. Array Array is one of the simplest data structures

Java Map Revealed: Tips and Strategies for Fast Data Access Java Map Revealed: Tips and Strategies for Fast Data Access Feb 19, 2024 pm 06:21 PM

JavaMap is a key-value pair-based data structure that allows developers to quickly store and retrieve data. The keys of a Map can be any object, and the values ​​can be any type of data. Each key in the Map can only be associated with at most one value. If multiple values ​​are set for the same key, only the last set value will be retained. There are two main implementations of Map: HashMap: uses a hash table to store key-value pairs. The performance of HashMap depends on how the hash table is implemented, and in most cases HashMap performs better than TreeMap. TreeMap: uses red-black trees to store key-value pairs. The performance of TreeMap is similar to HashMap, but in some cases, the performance of TreeMap can be

PHP SPL data structures: Inject speed and flexibility into your projects PHP SPL data structures: Inject speed and flexibility into your projects Feb 19, 2024 pm 11:00 PM

Overview of the PHPSPL Data Structure Library The PHPSPL (Standard PHP Library) data structure library contains a set of classes and interfaces for storing and manipulating various data structures. These data structures include arrays, linked lists, stacks, queues, and sets, each of which provides a specific set of methods and properties for manipulating data. Arrays In PHP, an array is an ordered collection that stores a sequence of elements. The SPL array class provides enhanced functions for native PHP arrays, including sorting, filtering, and mapping. Here is an example of using the SPL array class: useSplArrayObject;$array=newArrayObject(["foo","bar","baz"]);$array

See all articles