Sentiment classification using NRC dictionary in Python
Emotion Recognition or Recognition is when a person or an object perceives a specific emotion displayed in the environment and puts it into a variety of emotions Ability of one of the categories.
Sentiment Classification in Python is a viable alternative to traditional sentiment analysis techniques that label words or sentences as positive or negative and Assign them accordingly to have polarity scores.
The basic idea behind this algorithm is to imitate human thinking process, which attempts to segment words that depict emotions from text. The analysis is performed using a training data set, where a preset set of information is fed into the system as the basis for classification.
This is a package based on the WordNet thesaurus in the NLTK library and the National Research Council of Canada (NRC) 's Sentiment Dictionary, which has over 27,000 terms .
The library uses the following categories to measure and classify the emotional impact of words -
fear
anger
expect
trust
surprise
positive
negative
sad
disgust
joy
installation steps
Step 1 - Install the NRC module using the pip install command in the terminal.
pip install NRCLex
Installing
Notebooks and Command Prompt in jupyter generally follows the same steps.Installation in MacO also follows the same command. Use the terminal directly.
Step 2 - Also install textblob and nrclex to avoid encountering MissingCorpusError
ul>
Step 3 - Download the corpus from textblob
pip install textblob
python -m textblob.download_corpora
After installation, we can proceed to import the library and create text objects.
basic method
1. Original text to filtered text (for best results, "text" should be unicode).
text_object.load_raw_text(text: str)
2. Convert the tokenized word list into a token list
text_object.load_token_list(list_of_tokens: list)
3. Return the word list.
text_object.words
4. Returns a list of sentences.
text_object.sentences
5. Returns the impact list.
text_object.affect_list
6. Returns a dictionary of effects.
text_object.affect_dict
7. Return the raw emotion count.
text_object.raw_emotion_scores
8. Return to the highest emotions.
text_object.top_emotions
9. Return frequency.
Text_object.frequencies
Here, we use the top_emotions function to classify a list of words based on emotions.
algorithm
Step 1 - Import nrclex Import nrclex
Step 2 - Import NRCLex from nrclex
Step 3 - Initialize the list of string words you want to classify
Step 4 - For i
in the range len(text)Step 4 -Emotion = NRCLex(text[i]) #Create an object for each text
Step 5 -Emotion.top_emotions #Classify emotions
Example
# Import module import nrclex from nrclex import NRCLex text = ['happy', 'beautiful', 'exciting', 'depressed'] # Iterate through list for i in range(len(text)): # call by object creation emotion = NRCLex(text[i]) # Classify emotion print('\n', text[i], ': ', emotion.top_emotions)
Output
innocent : [('trust', 0.5), ('positive', 0.5)] hate : [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)] irritating : [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), ('disgust', 0.3333333333333333)] annoying : [('anger', 0.5), ('negative', 0.5)]
algorithm
Step 1 - Import nrclex
Step 2 - Import NRCLex from nrclex
Step 3 - Initialize the list of string words you want to classify
Step 4 - For i in the range len(text)
Step 4 -Emotion = NRCLex(text[i]) #Create an object for each text
Step 5 -Emotion.top_emotions #Classify emotions
Example
import nrclex from nrclex import NRCLex # Assign list of strings text = ['innocent','hate', 'irritating','annoying'] # Iterate through list for i in range(len(text)): # Create object emotion = NRCLex(text[i]) # Classify emotion print('\n\n', text[i], ': ', emotion.top_emotions)
Output
innocent : [('trust', 0.5), ('positive', 0.5)] hate : [('fear', 0.2), ('anger', 0.2), ('negative', 0.2), ('sadness', 0.2), ('disgust', 0.2)] irritating : [('anger', 0.3333333333333333), ('negative', 0.3333333333333333), ('disgust', 0.3333333333333333)] annoying : [('anger', 0.5), ('negative', 0.5)]
in conclusion
NRC sentiment lexicon is widely used in sentiment analysis and sentiment classification tasks in research and industry. This means there is a large community of users and resources available for support and further development. NRCLex also uses Google Translate to provide stable output for more than 100 languages around the world, successfully breaking down language barriers. This has multiple applications in healthcare and can help understand pandemic responses. Practical applications include psychology and behavioral science, fake news detection, and enhanced human-computer interaction.
The above is the detailed content of Sentiment classification using NRC dictionary in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.
