Home > Backend Development > C++ > Merge sort tree in C++

Merge sort tree in C++

王林
Release: 2023-09-12 17:33:03
forward
1320 people have browsed it

Merge sort tree in C++

We are given an integer array, a set of segment start and end pointers and a key value and the problem statement here is to find all the values ​​in the given range which are smaller than or equal to the given key value.

Let us understand with example

Input − arr[] = {7, 8 , 1, 4 , 6 , 8 , 10 }

Segment 1: start = 2, end = 4, k = 2

Segment 2: start = 1, end = 6, k = 3

Output − Count of number which are smaller than or equal to key value in the given range are 2 6

Explanation − [8, 1, 4] represents the range from 2 to 4 and 2 is the 2nd smallest number in the range [7, 8, 1, 4, 6, 8] represents the range from 1 to 6, 6 is the third smallest number in the range

Input - arr[] = {2 , 7 , 9, 4 , 6 , 5 , 1 |

Paragraph 1: starting position=3, ending position=6, k=4

Paragraph 2: starting position=2 , end position=5, k=3

Output - The number of numbers less than or equal to the key value in the given range is: 9 7

Explanation - [9, 4, 6, 5] represents the range from 3 to 6, 9 is the fourth smallest number in the given range [7, 9, 4, 6] represents the range from 2 to 4, 7 is the 3rd smallest number in the given segment range

The method used in the following program is as follows:

  • Declare an array of integer type. Calculate the size of the array. Declare a variable of vector type, forming a pair of integer types. Start a FOR loop to push data from the array into the vector.

  • Sort the given vector. Create a vector array of type integer with size MAX.

  • Call the function generateTree(1, 0, size - 1, vec, tree), and set getSmallestIndex to queryWrapper(2, 5, 2, size, vec, tree).

  • Print input[getSmallestIndex].

  • Set getSmallestIndex to call function queryWrapper(1, 6, 4, size, vec, tree).

  • Inside the function generateTree(int treeIndex, int leftIndex, int rightIndex, vector > &a, vector tree[])

    • Check IF leftIndex to rightIndex, then set tree[treeIndex].push_back(a[leftIndex].second) and return

    • Set midValue to (leftIndex rightIndex) / 2and call generateTree(2 * treeIndex, leftIndex, midValue, a, tree), generateTree(2 * treeIndex 1, midValue 1, rightIndex, a, tree) and merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex 1 ].begin(). Set tree[2 * treeIndex 1].end(),back_inserter(tree[treeIndex]))

  • Inside the function as int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector tree[])

    • Check IF startIndex to endIndex then return tree[treeIndex][0 ]

    • Set mid to (startIndex endIndex) / 2, last_in_query_range to (upper_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin())

    • set first_in_query_range to (lower_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex]. end(), queryStart) - tree[2 * treeIndex].begin()) and M to last_in_query_range - first_in_query_range

    • Check IF M greater than equals to key then return calculateKSmallest(startIndex, mid, queryStart,queryEnd, 2 * treeIndex, key, tree)

    • ELSE, then return calculateKSmallest(mid 1, endIndex, queryStart, queryEnd, 2 * treeIndex 1, key - M, tree).

  • Inside the function int queryWrapper(int queryStart, int queryEnd, int key, int n, vector > &a , vectortree[])

    • return call to the function calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree)

Example

#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000;
void generateTree(int treeIndex, int leftIndex, int rightIndex, vector<pair<int, int> > &a, vector<int> tree[]){
   if (leftIndex == rightIndex){
      tree[treeIndex].push_back(a[leftIndex].second);
      return;
   }
   int midValue = (leftIndex + rightIndex) / 2;
   generateTree(2 * treeIndex, leftIndex, midValue, a, tree);
   generateTree(2 * treeIndex + 1, midValue + 1, rightIndex, a, tree);
   merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex + 1].begin(),
   tree[2 * treeIndex + 1].end(), back_inserter(tree[treeIndex]));
}
int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector<int> tree[]){
      if (startIndex == endIndex){
         return tree[treeIndex][0];
      }
      int mid = (startIndex + endIndex) / 2;
      int last_in_query_range = (upper_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin());
      int first_in_query_range = (lower_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(),queryStart) - tree[2 * treeIndex].begin());
      int M = last_in_query_range - first_in_query_range;
      if (M >= key){
         return calculateKSmallest(startIndex, mid, queryStart, queryEnd, 2 * treeIndex, key, tree);
      }
      else {
         return calculateKSmallest(mid + 1, endIndex, queryStart,queryEnd, 2 * treeIndex + 1, key - M, tree);
      }
}
int queryWrapper(int queryStart, int queryEnd, int key, int n,
   vector<pair<int, int> > &a, vector<int> tree[]){
      return calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree);
}
int main(){
   int input[] = { 7, 8 , 1, 4 , 6 , 8 , 10 };
   int size = sizeof(input)/sizeof(input[0]);
   vector<pair<int, int> > vec;
   for (int i = 0; i < size; i++) {
      vec.push_back(make_pair(input[i], i));
   }
   sort(vec.begin(), vec.end());
   vector<int> tree[MAX];
   generateTree(1, 0, size - 1, vec, tree);

   cout<<"Count of number which are smaller than or equal to key value in the given range are:"<<endl;

   int getSmallestIndex = queryWrapper(2, 4, 2, size, vec, tree);
   cout << input[getSmallestIndex] << endl;
   getSmallestIndex = queryWrapper(1, 6, 3, size, vec, tree);
   cout << input[getSmallestIndex] << endl;
   return 0;
}
Copy after login

Output

If we run the above code, the following output will be generated

Count of number which are smaller than or equal to key value in the given range are:
4
6
Copy after login

The above is the detailed content of Merge sort tree in C++. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:tutorialspoint.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template