Merge sort tree in C++
We are given an integer array, a set of segment start and end pointers and a key value and the problem statement here is to find all the values in the given range which are smaller than or equal to the given key value.
Let us understand with example
Input − arr[] = {7, 8 , 1, 4 , 6 , 8 , 10 }
Segment 1: start = 2, end = 4, k = 2
Segment 2: start = 1, end = 6, k = 3
Output − Count of number which are smaller than or equal to key value in the given range are 2 6
Explanation − [8, 1, 4] represents the range from 2 to 4 and 2 is the 2nd smallest number in the range [7, 8, 1, 4, 6, 8] represents the range from 1 to 6, 6 is the third smallest number in the range
Input - arr[] = {2 , 7 , 9, 4 , 6 , 5 , 1 |
Paragraph 1: starting position=3, ending position=6, k=4
Paragraph 2: starting position=2 , end position=5, k=3
Output - The number of numbers less than or equal to the key value in the given range is: 9 7
Explanation - [9, 4, 6, 5] represents the range from 3 to 6, 9 is the fourth smallest number in the given range [7, 9, 4, 6] represents the range from 2 to 4, 7 is the 3rd smallest number in the given segment range
The method used in the following program is as follows:
Declare an array of integer type. Calculate the size of the array. Declare a variable of vector type, forming a pair of integer types. Start a FOR loop to push data from the array into the vector.
Sort the given vector. Create a vector array of type integer with size MAX.
Call the function generateTree(1, 0, size - 1, vec, tree), and set getSmallestIndex to queryWrapper(2, 5, 2, size, vec, tree).
Print input[getSmallestIndex].
Set getSmallestIndex to call function queryWrapper(1, 6, 4, size, vec, tree).
-
Inside the function generateTree(int treeIndex, int leftIndex, int rightIndex, vector
> &a, vector tree[]) Check IF leftIndex to rightIndex, then set tree[treeIndex].push_back(a[leftIndex].second) and return
Set midValue to (leftIndex rightIndex) / 2and call generateTree(2 * treeIndex, leftIndex, midValue, a, tree), generateTree(2 * treeIndex 1, midValue 1, rightIndex, a, tree) and merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex 1 ].begin(). Set tree[2 * treeIndex 1].end(),back_inserter(tree[treeIndex]))
-
Inside the function as int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector tree[])
Check IF startIndex to endIndex then return tree[treeIndex][0 ]
Set mid to (startIndex endIndex) / 2, last_in_query_range to (upper_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin())
set first_in_query_range to (lower_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex]. end(), queryStart) - tree[2 * treeIndex].begin()) and M to last_in_query_range - first_in_query_range
Check IF M greater than equals to key then return calculateKSmallest(startIndex, mid, queryStart,queryEnd, 2 * treeIndex, key, tree)
ELSE, then return calculateKSmallest(mid 1, endIndex, queryStart, queryEnd, 2 * treeIndex 1, key - M, tree).
-
Inside the function int queryWrapper(int queryStart, int queryEnd, int key, int n, vector
> &a , vector tree[]) return call to the function calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree)
Example
#include <bits/stdc++.h> using namespace std; const int MAX = 1000; void generateTree(int treeIndex, int leftIndex, int rightIndex, vector<pair<int, int> > &a, vector<int> tree[]){ if (leftIndex == rightIndex){ tree[treeIndex].push_back(a[leftIndex].second); return; } int midValue = (leftIndex + rightIndex) / 2; generateTree(2 * treeIndex, leftIndex, midValue, a, tree); generateTree(2 * treeIndex + 1, midValue + 1, rightIndex, a, tree); merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex + 1].begin(), tree[2 * treeIndex + 1].end(), back_inserter(tree[treeIndex])); } int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector<int> tree[]){ if (startIndex == endIndex){ return tree[treeIndex][0]; } int mid = (startIndex + endIndex) / 2; int last_in_query_range = (upper_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin()); int first_in_query_range = (lower_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(),queryStart) - tree[2 * treeIndex].begin()); int M = last_in_query_range - first_in_query_range; if (M >= key){ return calculateKSmallest(startIndex, mid, queryStart, queryEnd, 2 * treeIndex, key, tree); } else { return calculateKSmallest(mid + 1, endIndex, queryStart,queryEnd, 2 * treeIndex + 1, key - M, tree); } } int queryWrapper(int queryStart, int queryEnd, int key, int n, vector<pair<int, int> > &a, vector<int> tree[]){ return calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree); } int main(){ int input[] = { 7, 8 , 1, 4 , 6 , 8 , 10 }; int size = sizeof(input)/sizeof(input[0]); vector<pair<int, int> > vec; for (int i = 0; i < size; i++) { vec.push_back(make_pair(input[i], i)); } sort(vec.begin(), vec.end()); vector<int> tree[MAX]; generateTree(1, 0, size - 1, vec, tree); cout<<"Count of number which are smaller than or equal to key value in the given range are:"<<endl; int getSmallestIndex = queryWrapper(2, 4, 2, size, vec, tree); cout << input[getSmallestIndex] << endl; getSmallestIndex = queryWrapper(1, 6, 3, size, vec, tree); cout << input[getSmallestIndex] << endl; return 0; }
Output
If we run the above code, the following output will be generated
Count of number which are smaller than or equal to key value in the given range are: 4 6
The above is the detailed content of Merge sort tree in C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.
