Table of Contents
usage instructions
algorithm
Example
Output
in conclusion
Home Backend Development C++ Print nodes in a directed graph that do not belong to any cycle

Print nodes in a directed graph that do not belong to any cycle

Sep 13, 2023 pm 10:25 PM

Print nodes in a directed graph that do not belong to any cycle

In coordination diagrams, identifying hubs that do not belong to any cycle is crucial for different applications. These centers form the basis of acyclic subgraphs and play an important role in understanding the general graph structure. By using efficient graph intersection calculations, such as Profundity First Hunt (DFS) or Tarjan's calculation of closely related parts, we can effortlessly decide and print hubs that do not participate in any loops. These methods ensure the characterization of centers without circular collaboration, provide important knowledge for the non-circular parts of diagrams, and support different critical thinking situations related to diagrams.

usage instructions

  • Depth-first search (DFS) with loop detection

  • Tarjan’s strongly connected component algorithm

Depth-first search (DFS) with loop detection

In this approach, we use depth-first tracking (DFS) to navigate the coordination chart and distinguish cycles on the way. We mark visited centers and keep a list so that centers can be tracked in an ongoing DFS manner. If we hit a trailing edge (reaching the edge of the hub in a sustained DFS manner), we differentiate a cycle. At the end of DFS, the center in the ongoing DFS way will be important for a cycle. Hubs that do not use persistent DFS are not part of any loop and can be printed.

algorithm

  • Perform a Deep First Hunt (DFS) from each unvisited center on the chart.

  • During DFS, visited hubs are marked and added to the ongoing DFS path list.

  • If we encounter a trailing edge (an edge to a hub in the current DFS mode), we distinguish a cycle and mark all hubs in the current DFS mode as part of the cycle.

  • When DFS for a hub is complete, remove it from the list of in-progress DFS paths.

  • After completing the DFS of all hubs, the hubs that do not belong to any cycle will remain unchanged and we can print them.

Example

#include <iostream>
#include <vector>

class Graph {
public:
   Graph(int numVertices);
   void addEdge(int src, int dest);
   void DFS();
private:
   void DFSUtil(int v, std::vector<bool>& visited, std::vector<int>& dfsPath);
   int numVertices;
   std::vector<std::vector<int>> adjList;
};

Graph::Graph(int numVertices) : numVertices(numVertices) {
   adjList.resize(numVertices);
}

void Graph::addEdge(int src, int dest) {
   adjList[src].push_back(dest);
}

void Graph::DFSUtil(int v, std::vector<bool>& visited, std::vector<int>& dfsPath) {
   visited[v] = true;
   dfsPath.push_back(v);

   for (int neighbor : adjList[v]) {
      if (!visited[neighbor]) {
         DFSUtil(neighbor, visited, dfsPath);
      }
      else {
         std::cout << "Cycle found: ";
         for (size_t i = 0; i < dfsPath.size(); ++i) {
            if (dfsPath[i] == neighbor) {
               while (i < dfsPath.size()) {
                  std::cout << dfsPath[i] << " ";
                  ++i;
               }
               break;
            }
         }
         std::cout << std::endl;
      }
   }

   dfsPath.pop_back();
}

void Graph::DFS() {
   std::vector<bool> visited(numVertices, false);
   std::vector<int> dfsPath;

   for (int i = 0; i < numVertices; ++i) {
      if (!visited[i]) {
         DFSUtil(i, visited, dfsPath);
      }
   }
}

int main() {
   Graph graph(6);
   graph.addEdge(0, 1);
   graph.addEdge(1, 2);
   graph.addEdge(2, 3);
   graph.addEdge(3, 4);
   graph.addEdge(4, 1);
   graph.addEdge(4, 5);
   
   std::cout << "DFS traversal with cycle detection:\n";
   graph.DFS();

   return 0;
}
Copy after login

Output

DFS traversal with cycle detection:
Cycle found: 1 2 3 4 
Copy after login

Tarjan’s strongly connected component algorithm

Tarjan's calculation is a powerful calculation used to track all key related parts of the coordination diagram. Explicitly related parts are subsets of hubs for which coordination exists between any two hubs in the subset. A hub that is not part of any closely related component is not part of any cycle. By finding key associated parts we can identify hubs that do not belong to any cycle and print them\

algorithm

  • Apply Tarjan's calculations to the bootstrapping diagram to track all key relevant parts.

  • After tracing all the important related parts, distinguish the centers that are crucial for the closely related parts.

  • Hubs that do not belong to any explicitly associated parts do not belong to any loop and can be printed.

  • Both methods do differentiate and print centers that do not belong to any cycle in the coordination chart. The DFS method provides a simpler and more straightforward implementation, while Tarjan's calculations are more complex but provide additional data on focused correlation parts, which can be helpful for specific chart-related tasks. The decision on approach depends on the specific needs and the context of the main pressing issues.

Example

#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;

class Graph {
   int V;
   vector<vector<int>> adj;
   vector<bool> visited;
   vector<int> disc, low;
   stack<int> st;
   vector<vector<int>> SCCs;
   vector<bool> essentialNodes;

public:
   Graph(int V) : V(V) {
      adj.resize(V);
      visited.resize(V, false);
      disc.resize(V, -1);
      low.resize(V, -1);
      essentialNodes.resize(V, true);
   }

   void addEdge(int u, int v) {
      adj[u].push_back(v);
   }

   void tarjanDFS(int u) {
      static int time = 0;
      disc[u] = low[u] = ++time;
      st.push(u);
      visited[u] = true;

      for (int v : adj[u]) {
         if (disc[v] == -1) {
            tarjanDFS(v);
            low[u] = min(low[u], low[v]);
         } else if (visited[v]) {
            low[u] = min(low[u], disc[v]);
         }
      }

      if (low[u] == disc[u]) {
         vector<int> SCC;
         int v;
         do {
            v = st.top();
            st.pop();
            SCC.push_back(v);
            visited[v] = false;
         } while (v != u);

         SCCs.push_back(SCC);
      }
   }

   void tarjan() {
      for (int i = 0; i < V; ++i) {
         if (disc[i] == -1) {
            tarjanDFS(i);
         }
      }
   }

   void identifyEssentialNodes() {
      for (const vector<int>& SCC : SCCs) {
         for (int v : SCC) {
            for (int u : adj[v]) {
               if (find(SCC.begin(), SCC.end(), u) == SCC.end()) {
                  essentialNodes[u] = false;
               }
            }
         }
      }
   }

   void printEssentialNodes() {
      cout << "Essential Nodes for Each SCC:\n";
      for (int i = 0; i < V; ++i) {
         if (essentialNodes[i]) {
            cout << i << " ";
         }
      }
      cout << endl;
   }
};

int main() {
   Graph g(6);
   g.addEdge(0, 1);
   g.addEdge(1, 2);
   g.addEdge(2, 0);
   g.addEdge(1, 3);
   g.addEdge(3, 4);
   g.addEdge(4, 5);
   g.addEdge(5, 3);

   g.tarjan();
   g.identifyEssentialNodes();
   g.printEssentialNodes();

   return 0;
}
Copy after login

Output

Essential Nodes for Each SCC:
0 1 2 4 5
Copy after login

in conclusion

These two methods do solve the problem of identifying centers that do not belong to any cycle in the coordination chart. The DFS method is easy to implement and does not require many additional information structures. Tarjan's calculations, on the other hand, provide additional data on key correlation components, which may be helpful in certain situations.

The decision between the two methods depends on the specific prerequisites of the problem and the requirements for additional data passing through period-independent differentiation centers. In general, if the only goal is to find hubs that do not belong to any cycle, the DFS approach may be favored for its simplicity. Nonetheless, Tarjan's calculations may be an important tool if further examination of key relevant parts is required. Both methods provide proficient arrangements and can be adapted to the properties of the coordination chart and the desired outcome of the exam

The above is the detailed content of Print nodes in a directed graph that do not belong to any cycle. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How does the C   Standard Template Library (STL) work? How does the C Standard Template Library (STL) work? Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently? How do I use algorithms from the STL (sort, find, transform, etc.) efficiently? Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

How does dynamic dispatch work in C   and how does it affect performance? How does dynamic dispatch work in C and how does it affect performance? Mar 17, 2025 pm 01:08 PM

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

How do I use ranges in C  20 for more expressive data manipulation? How do I use ranges in C 20 for more expressive data manipulation? Mar 17, 2025 pm 12:58 PM

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

How do I handle exceptions effectively in C  ? How do I handle exceptions effectively in C ? Mar 12, 2025 pm 04:56 PM

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

How do I use move semantics in C   to improve performance? How do I use move semantics in C to improve performance? Mar 18, 2025 pm 03:27 PM

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

How do I use rvalue references effectively in C  ? How do I use rvalue references effectively in C ? Mar 18, 2025 pm 03:29 PM

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

How does C  's memory management work, including new, delete, and smart pointers? How does C 's memory management work, including new, delete, and smart pointers? Mar 17, 2025 pm 01:04 PM

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.

See all articles