Find the sum of n terms of the series: 1.2.3 2.3.4 … n(n 1)(n 2). Among them, 1.2.3 represents the first item and 2.3.4 represents the second item.
Let us see an example to understand this concept better,
Input: n = 5 Output: 420
1.2.3 2.3.4 3.4.5 4.5.6 5.6.7 = 6 24 60 120 210 = 420
n items = n(n 1)(n 2);where n = 1,2,3,…
= n(n^2 3n 2) =n^3 3n^2 2n
Now, note that p>
summation=n(n 1)/2; if the nth item=n
=n(n 1)(2n 1)/6; if nth item=n^2
=n^2(n 1)^2/4; if nth item=n^3
Therefore the required sum =
n^2(n 1)^2 /4 3 ×n(n 1)(2n 1)/6 2 × n(n 1)/2
=n^2 (n 1)^2 /4 n(n 1)(2n 1)/2 n(n 1)
=n(n 1) { n(n 1)/4 ( 2n 1)/2 1 }
=n( n 1) { (n^2 n 4n 2 4)/4}
=1/4 n(n 1){ n^ 2 5n 6}
=1/4 n(n 1)(n 2)(n 3)
There are two ways to solve this problem,
One is using mathematical formulas and the other is looping.
In Mathematical Formula Method, the series summation formula of this series is given.
Input: n number of elements.
Step 1 : calc the sum, sum = 1/4{n(n+1)(n+2)(n+3)} Step 2 : Print sum, using standard print method.
Real-time demonstration
#include <stdio.h> #include<math.h> int main() { float n = 6; float area = n*(n+1)*(n+2)*(n+3)/4; printf("The sum is : %f",area); return 0; }
The sum is : 756
Real-time demonstration
#include <stdio.h> #include<math.h> int main() { float n = 6; int res = 0; for (int i = 1; i <= n; i++) res += (i) * (i + 1) * (i + 2); printf("The sum is : %d",res); return 0; }
The sum is : 756
The above is the detailed content of Translate the following into Chinese: Solving the sum of the sequence 1.2.3 + 2.3. + ... + n(n+1)(n+2) in C. For more information, please follow other related articles on the PHP Chinese website!