


C++ program to remove nodes that do not satisfy path and are greater than or equal to k
In this problem, we have a binary tree whose path from root node to leaf node is fully defined. The sum of all nodes from the root node to the leaf nodes must be greater than or equal to the constant value k. Therefore, we need to remove all nodes in those paths whose sum is less than k, so that the remaining paths in the tree will be greater than k. The important thing to remember here is that a node may be part of many paths, so such nodes are only removed if the sum of all paths leading to that node
From the root node to the leaf node, we can calculate the sum. When the recursive call to the node completes and control returns, we can check if the sum of the left and right paths
Suppose we have 150 K and a tree like this -
10 /\ 20 30 /\ /\ 5 35 40 45 /\ /\ 50 55 60 65 /\ / / 70 80 90 100
If we see that the sum of the path root->left->left is 10 20 5, which is 25, less than 150, we need to prune it and remove 5. After that, let's evaluate 10->30->40. It is less than 150, so 40 is deleted.
Now we see another path 10->20->35->50, the sum of 115 is less than 150, so we delete 50. Now our remaining path is
10->20->35->55->70 ; 10->20->35->55->80 ; 10->30->45->60->90 ; 10->30->45->65->100 ;
The sum of all paths is greater than 150, so we don't need to prune anymore.
Example
The following is a C program that demonstrates how to delete nodes that are not in any path and whose sum is greater than or equal to any constant value k -
#include <iostream> using namespace std; class Node { public: int value; Node *left, *right; Node(int value) { this->value = value; left = right = NULL; } }; Node* removeNodesWithPathSumLessThanK(Node* root, int k, int& sum) { if(root == NULL) return NULL; int leftSum, rightSum; leftSum = rightSum = sum + root->value; root->left = removeNodesWithPathSumLessThanK(root->left, k, leftSum); root->right = removeNodesWithPathSumLessThanK(root->right, k, rightSum); sum = max(leftSum, rightSum); if(sum < k) { free(root); root = NULL; } return root; } void printInorderTree(Node* root) { if(root) { printInorderTree(root->left); cout << root->value << " "; printInorderTree(root->right); } } int main() { int k = 150; Node* root = new Node(10); root->left = new Node(20); root->right = new Node(30); root->left->left = new Node(5); root->left->right = new Node(35); root->right->left = new Node(40); root->right->right = new Node(45); root->left->right->left = new Node(50); root->left->right->right = new Node(55); root->right->right->left = new Node(60); root->right->right->right = new Node(65); root->left->right->right->left = new Node(70); root->left->right->right->right = new Node(80); root->right->right->left->left = new Node(90); root->right->right->right->left = new Node(100); int sum = 0; cout << "Inorder tree before: "; printInorderTree(root); root = removeNodesWithPathSumLessThanK(root, k, sum); cout << "\nInorder tree after: "; printInorderTree(root); return 0; }
Output
Inorder tree before: 5 20 50 35 70 55 80 10 40 30 90 60 45 100 65 Inorder tree after: 20 35 70 55 80 10 30 90 60 45 100 65
Our fully pruned tree -
10 / \ 20 30 \ \ 35 45 \ /\ 55 60 65 /\ / / 70 80 90 100
in conclusion
As we can see, after the initial observation, we can apply DFS and remove nodes by calculating the sum of that node as the recursive function returns from each call. Overall, this is a simple matter of observation and methodology.
The above is the detailed content of C++ program to remove nodes that do not satisfy path and are greater than or equal to k. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.
