Written in C++, find the number of pairs of prime numbers in an array
In this article, we will explain everything about finding the number of pairs of prime numbers in an array using C. We have an array of integers arr[] and we need to find all possible pairs of prime numbers present in it. Here is an example of the problem -
Input : arr[ ] = { 1, 2, 3, 5, 7, 9 } Output : 6 From the given array, prime pairs are (2, 3), (2, 5), (2, 7), (3, 5), (3, 7), (5, 7) Input : arr[] = {1, 4, 5, 9, 11} Output : 1
Methods to find solution
Brute force method
Now we will discuss the most basic method i.e. brute force method and try to find another This method: This method is not efficient.
Example
#include <bits/stdc++.h> using namespace std; void seiveOfEratosthenes(int *arr, bool *prime, int n, int MAX){ bool p[MAX+1]; memset(p, true, sizeof(p)); p[1] = false; p[0] = false; for(int i = 2; i * i <= MAX; i++){ if(p[i] == true){ for(int j = i*2; j <= MAX; j += i){ p[j] = false; } } } for(int i = 0; i < n; i++){ if(p[arr[i]] == true) prime[i] = true; } } int main(){ int arr[] = {1, 2, 3, 5, 7, 8, 9}; int n = sizeof(arr) / sizeof(arr[0]); // size of our array. int answer = 0; // counter variable to count the number of prime pairs. int MAX = INT_MIN; // Max element for(int i = 0; i < n; i++){ MAX = max(MAX, arr[i]); } bool prime[n]; // boolean array that tells if the element is prime or not. memset(prime, false, sizeof(prime)); // initializing all the elements with value of false. seiveOfEratosthenes(arr, prime, n, MAX); for(int i = 0; i < n-1; i++){ for(int j = i+1; j < n; j++){ if(prime[i] == true && prime[j] == true) answer++; } } cout << answer << "\n"; return 0; }
Output
6
In this approach we create a boolean array that tells us whether each element is prime or not, then we iterate over all Possible pairings and check if the two numbers in the pairing are prime. If it is a prime number, increase the answer by one and continue.
But this method is not very efficient because its time complexity is O(N*N), where N is the size of the array, so now we have to use this method Faster.
Efficient method
In this method, most of the code is the same, but the key change is that instead of looping through all possible pairings, we use a formula to calculate they.
Example
#include <bits/stdc++.h> using namespace std; void seiveOfEratosthenes(int *arr, bool *prime, int n, int MAX){ bool p[MAX+1]; memset(p, true, sizeof(p)); p[1] = false; p[0] = false; for(int i = 2; i * i <= MAX; i++){ if(p[i] == true){ for(int j = i*2; j <= MAX; j += i){ p[j] = false; } } } for(int i = 0; i < n; i++){ if(p[arr[i]] == true) prime[i] = true; } } int main(){ int arr[] = {1, 2, 3, 5, 7, 8, 9}; int n = sizeof(arr) / sizeof(arr[0]); // size of our array. int answer = 0; // counter variable to count the number of prime pairs. int MAX = INT_MIN; // Max element for(int i = 0; i < n; i++){ MAX = max(MAX, arr[i]); } bool prime[n]; // boolean array that tells if the element is prime or not. memset(prime, false, sizeof(prime)); // initializing all the elements with value of false. seiveOfEratosthenes(arr, prime, n, MAX); for(int i = 0; i < n; i++){ if(prime[i] == true) answer++; } answer = (answer * (answer - 1)) / 2; cout << answer << "\n"; return 0; }
Output
6
As you can see, most of the code is the same as the previous method, but the key change that greatly reduces the complexity is that we use The formula for , i.e. n(n-1)/2, will calculate the number of pairs of prime numbers we have.
Explanation of the above code
In this code, we use the sieve of Eratosthenes to label all prime numbers until we are in a large batch. In another boolean array, we mark by index whether the element is prime or not.
Finally, we loop through the entire array, find the total number of primes present, and find all possible pairs of primes using the formula n*(n-1)/2. With this formula, our complexity is reduced to O(N), where N is the size of the array.
Conclusion
In this article, we solved a problem to find the number of prime pairs present in an array with O(n) time complexity. We also learned a C program to solve this problem and a complete way to solve this problem (normal and efficient). We can write the same program in other languages, such as C, java, python and other languages.
The above is the detailed content of Written in C++, find the number of pairs of prime numbers in an array. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The method of using a foreach loop to remove duplicate elements from a PHP array is as follows: traverse the array, and if the element already exists and the current position is not the first occurrence, delete it. For example, if there are duplicate records in the database query results, you can use this method to remove them and obtain results without duplicate records.

Methods for deep copying arrays in PHP include: JSON encoding and decoding using json_decode and json_encode. Use array_map and clone to make deep copies of keys and values. Use serialize and unserialize for serialization and deserialization.

The performance comparison of PHP array key value flipping methods shows that the array_flip() function performs better than the for loop in large arrays (more than 1 million elements) and takes less time. The for loop method of manually flipping key values takes a relatively long time.

PHP's array_group_by function can group elements in an array based on keys or closure functions, returning an associative array where the key is the group name and the value is an array of elements belonging to the group.

The best practice for performing an array deep copy in PHP is to use json_decode(json_encode($arr)) to convert the array to a JSON string and then convert it back to an array. Use unserialize(serialize($arr)) to serialize the array to a string and then deserialize it to a new array. Use the RecursiveIteratorIterator to recursively traverse multidimensional arrays.

Multidimensional array sorting can be divided into single column sorting and nested sorting. Single column sorting can use the array_multisort() function to sort by columns; nested sorting requires a recursive function to traverse the array and sort it. Practical cases include sorting by product name and compound sorting by sales volume and price.

PHP's array_group() function can be used to group an array by a specified key to find duplicate elements. This function works through the following steps: Use key_callback to specify the grouping key. Optionally use value_callback to determine grouping values. Count grouped elements and identify duplicates. Therefore, the array_group() function is very useful for finding and processing duplicate elements.

The PHP array merging and deduplication algorithm provides a parallel solution, dividing the original array into small blocks for parallel processing, and the main process merges the results of the blocks to deduplicate. Algorithmic steps: Split the original array into equally allocated small blocks. Process each block for deduplication in parallel. Merge block results and deduplicate again.
