How to develop a simple face recognition system using MongoDB
How to use MongoDB to develop a simple face recognition system
Face recognition technology is widely used in today's society, it can be used for security control, face recognition Scenarios such as payment and facial access control. Using the MongoDB database combined with the face recognition algorithm, a simple and efficient face recognition system can be developed. This article will introduce how to use MongoDB to develop a simple face recognition system and provide specific code examples.
1. Preparation
Before starting development, we need to install and configure the MongoDB database. First, download and install MongoDB. During the installation process, be sure to add MongoDB's bin directory to the system's environment variables so that you can directly access MongoDB from the command line. Then, create a new database, such as "face_recognition", and create two collections to store face data and recognition results respectively.
2. Storing face data
Face data usually contains two parts: face pictures and face feature vectors. We can use OpenCV library for face detection and feature extraction. The following is a simple Python code example for detecting faces from pictures and extracting feature vectors:
import cv2 def face_detection(image_path): face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') img = cv2.imread(image_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) if len(faces) == 0: return None (x, y, w, h) = faces[0] face_img = img[y:y+h, x:x+w] return face_img def feature_extraction(face_img): face_recognizer = cv2.face.LBPHFaceRecognizer_create() face_recognizer.read('face_recognizer.xml') gray = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY) face_vector = face_recognizer.predict(gray) return face_vector image_path = 'example.jpg' face_img = face_detection(image_path) if face_img is not None: face_vector = feature_extraction(face_img) # 将人脸图片和特征向量存储到MongoDB中 # ...
In the above code, we first find the face area in the picture through the face detection algorithm, Then use the face recognition algorithm to extract the feature vector of the face. Finally, the face images and feature vectors are stored in the face data collection in MongoDB.
3. Face recognition
Next, we will introduce how to use the face data stored in MongoDB for face recognition.
import cv2 def face_recognition(face_img): # 从MongoDB中加载人脸数据集合 # ... face_recognizer = cv2.face.LBPHFaceRecognizer_create() face_recognizer.train(faces, labels) gray = cv2.cvtColor(face_img, cv2.COLOR_BGR2GRAY) face_vector = feature_extraction(face_img) label, confidence = face_recognizer.predict(face_vector) if confidence < 70: return label else: return None face_img = cv2.imread('test.jpg') label = face_recognition(face_img) if label is not None: # 从MongoDB中获取该标签对应的人脸信息 # ...
In the above code, we first load the face data from MongoDB, and then use the face recognition algorithm to train the model. Next, feature vectors are extracted from the face to be recognized, and the trained model is used for recognition. If the confidence is less than 70, it is judged as a credible recognition result. We can obtain the face information of the corresponding label from MongoDB for display.
4. Summary
Through this article, we learned how to use the MongoDB database to develop a simple face recognition system. We learned how face data is stored and how to use MongoDB to complete the operations of adding, deleting, modifying, and checking face data. At the same time, we also learned how to use the OpenCV library for face detection and feature extraction, and integrated it with MongoDB to implement a complete face recognition system.
Of course, the example in this article is just a simple beginning. The actual face recognition system also needs to consider more factors, such as the management of the face database, the optimization of the face detection algorithm, etc. I hope this article can provide some ideas and references for developers to further explore and apply face recognition technology.
The above is the detailed content of How to develop a simple face recognition system using MongoDB. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



To connect to MongoDB using Navicat, you need to: Install Navicat Create a MongoDB connection: a. Enter the connection name, host address and port b. Enter the authentication information (if required) Add an SSL certificate (if required) Verify the connection Save the connection

.NET 4.0 is used to create a variety of applications and it provides application developers with rich features including: object-oriented programming, flexibility, powerful architecture, cloud computing integration, performance optimization, extensive libraries, security, Scalability, data access, and mobile development support.

In a serverless architecture, Java functions can be integrated with the database to access and manipulate data in the database. Key steps include: creating Java functions, configuring environment variables, deploying functions, and testing functions. By following these steps, developers can build complex applications that seamlessly access data stored in databases.

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys

This article describes how to build a highly available MongoDB database on a Debian system. We will explore multiple ways to ensure data security and services continue to operate. Key strategy: ReplicaSet: ReplicaSet: Use replicasets to achieve data redundancy and automatic failover. When a master node fails, the replica set will automatically elect a new master node to ensure the continuous availability of the service. Data backup and recovery: Regularly use the mongodump command to backup the database and formulate effective recovery strategies to deal with the risk of data loss. Monitoring and Alarms: Deploy monitoring tools (such as Prometheus, Grafana) to monitor the running status of MongoDB in real time, and

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

PiNetwork is about to launch PiBank, a revolutionary mobile banking platform! PiNetwork today released a major update on Elmahrosa (Face) PIMISRBank, referred to as PiBank, which perfectly integrates traditional banking services with PiNetwork cryptocurrency functions to realize the atomic exchange of fiat currencies and cryptocurrencies (supports the swap between fiat currencies such as the US dollar, euro, and Indonesian rupiah with cryptocurrencies such as PiCoin, USDT, and USDC). What is the charm of PiBank? Let's find out! PiBank's main functions: One-stop management of bank accounts and cryptocurrency assets. Support real-time transactions and adopt biospecies

According to news on July 9, blogger "Smart Pikachu" broke the news that 3D under-screen face recognition technology is expected to be mass-produced. By then, high-level face recognition can be achieved without the need for bangs, smart islands, three-hole holes, etc. According to reports, Huawei is testing related technologies and will adopt them in future models. At present, Huawei only uses the Mate series to adopt the 3D face recognition solution. In the future, the new flagship of the Mate series should also be the first to be equipped with under-screen technology. According to the news, the hardware design of the Mate70 series has been basically completed, and it will not be available until the Mate80 series at the earliest. The Mate70 series will still use the three-hole solution like the previous generation, placing components such as face recognition and front-facing cameras above the screen. This is also a helpless move under current technology.
