Home > Backend Development > C++ > body text

How to use the minimum spanning tree algorithm in C++

王林
Release: 2023-09-20 16:58:41
Original
1254 people have browsed it

How to use the minimum spanning tree algorithm in C++

How to use the minimum spanning tree algorithm in C

The minimum spanning tree (Minimum Spanning Tree, MST) is an important concept in graph theory, which means connecting a A subset of the edges of all vertices of an undirected connected graph, and the sum of the weights of these edges is the smallest. There are many algorithms that can be used to solve the minimum spanning tree, such as Prim's algorithm and Kruskal's algorithm. This article will introduce how to use C to implement Prim's algorithm and Kruskal's algorithm, and give specific code examples.

Prim's algorithm is a greedy algorithm. It starts from a vertex of the graph, gradually selects the edge with the smallest weight connected to the current minimum spanning tree, and adds the edge to the minimum spanning tree. The following is a C code example of Prim's algorithm:

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

const int INF = 1e9;

int prim(vector<vector<pair<int, int>>>& graph) {
    int n = graph.size(); // 图的顶点数
    vector<bool> visited(n, false); // 标记顶点是否已访问
    vector<int> dist(n, INF); // 记录顶点到最小生成树的最短距离
    int minCost = 0; // 最小生成树的总权值

    // 从第一个顶点开始构建最小生成树
    dist[0] = 0;

    // 使用优先队列保存当前距离最小的顶点和权值
    priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
    pq.push(make_pair(0, 0));

    while (!pq.empty()) {
        int u = pq.top().second; // 当前距离最小的顶点
        pq.pop();

        // 如果顶点已访问过,跳过
        if (visited[u]) {
            continue;
        }

        visited[u] = true; // 标记顶点为已访问
        minCost += dist[u]; // 加入顶点到最小生成树的权值

        // 对于顶点u的所有邻接顶点v
        for (auto& edge : graph[u]) {
            int v = edge.first;
            int weight = edge.second;

            // 如果顶点v未访问过,并且到顶点v的距离更小
            if (!visited[v] && weight < dist[v]) {
                dist[v] = weight;
                pq.push(make_pair(dist[v], v));
            }
        }
    }

    return minCost;
}

int main() {
    int n, m; // 顶点数和边数
    cin >> n >> m;
    vector<vector<pair<int, int>>> graph(n);

    // 读取边的信息
    for (int i = 0; i < m; ++i) {
        int u, v, w; // 边的两个顶点及其权值
        cin >> u >> v >> w;
        --u; --v; // 顶点从0开始编号
        graph[u].push_back(make_pair(v, w));
        graph[v].push_back(make_pair(u, w));
    }

    int minCost = prim(graph);
    cout << "最小生成树的权值之和为:" << minCost << endl;

    return 0;
}
Copy after login

Kruskal's algorithm is an edge-based greedy algorithm. It selects the edge with the smallest weight from all edges of the graph and determines whether the edge will form a cycle. . If no cycle is formed, add the edge to the minimum spanning tree. The following is a C code example of Kruskal's algorithm:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct Edge {
    int u, v, weight; // 边的两个顶点及其权值
    Edge(int u, int v, int weight) : u(u), v(v), weight(weight) {}
};

const int MAXN = 100; // 最大顶点数
int parent[MAXN]; // 并查集数组

bool compare(Edge a, Edge b) {
    return a.weight < b.weight;
}

int findParent(int x) {
    if (parent[x] == x) {
        return x;
    }
    return parent[x] = findParent(parent[x]);
}

void unionSet(int x, int y) {
    int xParent = findParent(x);
    int yParent = findParent(y);
    if (xParent != yParent) {
        parent[yParent] = xParent;
    }
}

int kruskal(vector<Edge>& edges, int n) {
    sort(edges.begin(), edges.end(), compare);
    int minCost = 0; // 最小生成树的总权值

    for (int i = 0; i < n; ++i) {
        parent[i] = i; // 初始化并查集数组
    }

    for (auto& edge : edges) {
        int u = edge.u;
        int v = edge.v;
        int weight = edge.weight;

        // 如果顶点u和顶点v不属于同一个连通分量,则将该边加入到最小生成树中
        if (findParent(u) != findParent(v)) {
            unionSet(u, v);
            minCost += weight;
        }
    }

    return minCost;
}

int main() {
    int n, m; // 顶点数和边数
    cin >> n >> m;
    vector<Edge> edges;

    // 读取边的信息
    for (int i = 0; i < m; ++i) {
        int u, v, w; // 边的两个顶点及其权值
        cin >> u >> v >> w;
        edges.push_back(Edge(u, v, w));
    }

    int minCost = kruskal(edges, n);
    cout << "最小生成树的权值之和为:" << minCost << endl;

    return 0;
}
Copy after login

Through the above code example, we can use Prim's algorithm and Kruskal's algorithm to solve the minimum spanning tree problem in C. In practical applications, the appropriate algorithm can be selected to solve the problem according to the specific situation. The time complexity of these algorithms is O(ElogV) and O(ElogE) respectively, where V is the number of vertices and E is the number of edges. Therefore, they can also achieve better results when processing large-scale graphs.

The above is the detailed content of How to use the minimum spanning tree algorithm in C++. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template