How to use Java to implement the minimum spanning tree algorithm
The minimum spanning tree algorithm is a classic problem in graph theory, used to solve the minimum of a weighted connected graph spanning tree. This article will introduce how to use Java language to implement this algorithm and provide specific code examples.
The following is a Java implementation example of Prim's algorithm:
import java.util.ArrayList; import java.util.List; import java.util.PriorityQueue; import java.util.Queue; class Edge implements Comparable<Edge> { int from; int to; int weight; public Edge(int from, int to, int weight) { this.from = from; this.to = to; this.weight = weight; } @Override public int compareTo(Edge other) { return Integer.compare(this.weight, other.weight); } } public class Prim { public static List<Edge> calculateMST(List<List<Edge>> graph) { int n = graph.size(); boolean[] visited = new boolean[n]; Queue<Edge> pq = new PriorityQueue<>(); // Start from vertex 0 int start = 0; visited[start] = true; for (Edge e : graph.get(start)) { pq.offer(e); } List<Edge> mst = new ArrayList<>(); while (!pq.isEmpty()) { Edge e = pq.poll(); int from = e.from; int to = e.to; int weight = e.weight; if (visited[to]) { continue; } visited[to] = true; mst.add(e); for (Edge next : graph.get(to)) { if (!visited[next.to]) { pq.offer(next); } } } return mst; } }
The following is a Java implementation example of Kruskal's algorithm:
import java.util.ArrayList; import java.util.Collections; import java.util.List; class Edge implements Comparable<Edge> { int from; int to; int weight; public Edge(int from, int to, int weight) { this.from = from; this.to = to; this.weight = weight; } @Override public int compareTo(Edge other) { return Integer.compare(this.weight, other.weight); } } public class Kruskal { public static List<Edge> calculateMST(List<Edge> edges, int n) { List<Edge> mst = new ArrayList<>(); Collections.sort(edges); int[] parent = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; } for (Edge e : edges) { int from = e.from; int to = e.to; int weight = e.weight; int parentFrom = findParent(from, parent); int parentTo = findParent(to, parent); if (parentFrom != parentTo) { mst.add(e); parent[parentFrom] = parentTo; } } return mst; } private static int findParent(int x, int[] parent) { if (x != parent[x]) { parent[x] = findParent(parent[x], parent); } return parent[x]; } }
import java.util.ArrayList; import java.util.List; public class Main { public static void main(String[] args) { List<List<Edge>> graph = new ArrayList<>(); graph.add(new ArrayList<>()); graph.add(new ArrayList<>()); graph.add(new ArrayList<>()); graph.add(new ArrayList<>()); graph.get(0).add(new Edge(0, 1, 2)); graph.get(0).add(new Edge(0, 2, 3)); graph.get(1).add(new Edge(1, 0, 2)); graph.get(1).add(new Edge(1, 2, 1)); graph.get(1).add(new Edge(1, 3, 5)); graph.get(2).add(new Edge(2, 0, 3)); graph.get(2).add(new Edge(2, 1, 1)); graph.get(2).add(new Edge(2, 3, 4)); graph.get(3).add(new Edge(3, 1, 5)); graph.get(3).add(new Edge(3, 2, 4)); List<Edge> mst = Prim.calculateMST(graph); System.out.println("Prim算法得到的最小生成树:"); for (Edge e : mst) { System.out.println(e.from + " -> " + e.to + ",权重:" + e.weight); } List<Edge> edges = new ArrayList<>(); edges.add(new Edge(0, 1, 2)); edges.add(new Edge(0, 2, 3)); edges.add(new Edge(1, 2, 1)); edges.add(new Edge(1, 3, 5)); edges.add(new Edge(2, 3, 4)); mst = Kruskal.calculateMST(edges, 4); System.out.println("Kruskal算法得到的最小生成树:"); for (Edge e : mst) { System.out.println(e.from + " -> " + e.to + ",权重:" + e.weight); } } }
By running the above example program, you can get the following output:
Prim算法得到的最小生成树: 0 -> 1,权重:2 1 -> 2,权重:1 2 -> 3,权重:4 Kruskal算法得到的最小生成树: 1 -> 2,权重:1 0 -> 1,权重:2 2 -> 3,权重:4
The above is a specific code example of using Java to implement the minimum spanning tree algorithm. Through these sample codes, readers can better understand and learn the implementation process and principles of the minimum spanning tree algorithm. Hope this article is helpful to readers.
The above is the detailed content of How to implement the minimum spanning tree algorithm using java. For more information, please follow other related articles on the PHP Chinese website!