Table of Contents
The concept of natural language processing" >The concept of natural language processing
Key technologies of NLP" >Key technologies of NLP
1. Word segmentation and tokenization
2. Semantic analysis
3. Information extraction
4. Machine translation
5. Sentiment Analysis
Application fields of NLP" > Application fields of NLP
1. Search engine
2. Social media analysis
3. Automatic text summarization
4. Medical Diagnosis and Research
5. Financial field
Future Outlook" >Future Outlook
Home Technology peripherals AI Natural language processing: enabling computers to understand and process human language

Natural language processing: enabling computers to understand and process human language

Sep 21, 2023 pm 03:53 PM
AI natural language processing

Natural Language Processing (NLP) is an important and exciting technology in the field of artificial intelligence. Its goal is to enable computers to understand, parse and generate human language. The development of NLP has made tremendous progress, enabling computers to better interact with humans and achieve a wider range of applications. This article will discuss the concepts, technologies, applications and future prospects of natural language processing

The concept of natural language processing

Natural language processing is a The study of enabling computers to understand and process human language. The complexity and ambiguity of human language make computers face huge challenges in understanding and processing. The goal of NLP is to develop algorithms and models that enable computers to extract information from text, recognize semantics, generate language, and even conduct conversations.

Natural language processing: enabling computers to understand and process human language

Key technologies of NLP

1. Word segmentation and tokenization

Tokenization is the process of splitting text into words or words, while tokenization is to add tags such as part of speech to each word. These two steps are the basis of natural language processing and provide basic support for subsequent processing

Natural language processing: enabling computers to understand and process human language

2. Semantic analysis

Semantic analysis involves understanding the meaning of sentences, including the relationship between words, context, etc. It enables computers to infer the true intention of a sentence

3. Information extraction

Information extraction refers to extracting valuable information from text Information, such as extracting key events, names, places, etc. from the news

Natural language processing: enabling computers to understand and process human language

4. Machine translation

The purpose of machine translation is to convert one language into another language, which requires the conversion of word meaning, grammar and context

5. Sentiment Analysis

Sentiment analysis is a method used to determine the emotional color of text, through which people’s moods and emotions can be understood

6. Dialogue system

The goal of the dialogue system is to achieve natural dialogue between computers and humans. It can be applied to various scenarios such as customer support, virtual assistants, etc.

Natural language processing: enabling computers to understand and process human language

Application fields of NLP

1. Search engine

Search engines use NLP technology to understand the user’s search intent and return results relevant to the user’s query.

Natural language processing: enabling computers to understand and process human language

2. Social media analysis

NLP technology can analyze large amounts of text data on social media , helping enterprises understand user emotions, trends and feedback

3. Automatic text summarization

NLP can automatically extract key information from large amounts of text , generate concise summaries.

Natural language processing: enabling computers to understand and process human language

4. Medical Diagnosis and Research

NLP technology can assist doctors in analyzing medical records and assisting in diagnosis and research

5. Financial field

NLP can analyze news, reports and other texts to help financial practitioners make decisions.

Natural language processing: enabling computers to understand and process human language

Future Outlook

With the continuous advancement of artificial intelligence technology, natural language processing (NLP) The application prospects are broader. In the future, we can look forward to more intelligent dialogue systems, more accurate machine translation, deeper sentiment analysis, and more. At the same time, NLP will also be combined with technologies in other fields to achieve more new innovations and applications

Natural language processing: enabling computers to understand and process human language

Natural language processing has become the leading technology in the field of artificial intelligence. an important branch. It enables computers to better understand and process human language. With the continuous development of technology, natural language processing will continue to create value in various fields and bring more convenience and possibilities to our lives

Natural language processing: enabling computers to understand and process human language

Natural language processing: enabling computers to understand and process human language

The above is the detailed content of Natural language processing: enabling computers to understand and process human language. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles