Home Backend Development Golang The combined application of synchronization primitives and performance optimization strategies in Golang

The combined application of synchronization primitives and performance optimization strategies in Golang

Sep 27, 2023 pm 12:16 PM
golang Performance optimization strategies Synchronization primitives

The combined application of synchronization primitives and performance optimization strategies in Golang

Golang is a programming language with high execution efficiency, and its concurrent programming features are widely used in various demand scenarios. In Golang's standard library, many synchronization primitives are provided to implement concurrency control, such as mutex, channel, etc. At the same time, we can also use some performance optimization strategies to further improve program running efficiency. This article will introduce how to combine synchronization primitives and performance optimization strategies in Golang, and provide specific code examples.

1. Introduction and application scenarios of synchronization primitives
Synchronization primitives are designed to coordinate the execution sequence and data access between multiple concurrent goroutines. In Golang, the most commonly used synchronization primitives are mutex, cond and waitgroup.

1.1 mutex
mutex is a mutex lock that protects the code in the critical section to ensure that multiple goroutines do not access shared resources at the same time. Mutex uses two methods, Lock() and Unlock(), the former is used to acquire the lock, and the latter is used to release the lock.

Generally, when multiple goroutines need to read and write the same shared resource, we can use mutex to ensure safe access to the resource. The following is a sample code using mutex:

package main

import (
    "fmt"
    "sync"
)

var (
    count int
    mux   sync.Mutex
)

func increment() {
    mux.Lock()
    count++
    mux.Unlock()
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 1000; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            increment()
        }()
    }
    wg.Wait()
    fmt.Println("Count:", count)
}
Copy after login

In the above code, we created a global variable count, and multiple goroutines increment the count by calling the increment function. In order to ensure safe access to count, we use mutex for mutex control.

1.2 cond
cond is a condition variable that can pass signals between goroutines. When a goroutine waits for a certain condition to be met, it can suspend itself through the Wait method of cond, and then continue execution after the condition is met.

The scenario where cond is used is generally the producer-consumer model. The specific example code is as follows:

package main

import (
    "fmt"
    "sync"
)

var (
    count     int
    maxCount  = 10
    condition = sync.NewCond(&sync.Mutex{})
)

func produce() {
    condition.L.Lock()
    for count > maxCount {
        condition.Wait()
    }
    count++
    fmt.Println("Produce:", count)
    condition.L.Unlock()
    condition.Signal()
}

func consume() {
    condition.L.Lock()
    for count <= 0 {
        condition.Wait()
    }
    count--
    fmt.Println("Consume:", count)
    condition.L.Unlock()
    condition.Signal()
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 10; i++ {
        wg.Add(2)
        go func() {
            defer wg.Done()
            produce()
        }()

        go func() {
            defer wg.Done()
            consume()
        }()
    }
    wg.Wait()
}
Copy after login

In the above code, we implemented a simple producer-consumer model through cond. When the count exceeds maxCount, the producer suspends itself by calling the Wait method of cond, and then wakes up other waiting goroutines by calling the Signal method of cond after the consumer consumes.

1.3 waitgroup
waitgroup is a counter that can wait for a group of goroutines to be executed before continuing. waitgroup provides three methods Add(), Done() and Wait(). The first two are used to increase and decrease the counter, and the latter is used to wait for the counter to return to zero.

The usage scenario of waitgroup is generally when the main goroutine waits for other concurrent goroutines to complete before proceeding to the next step. The following is a sample code of waitgroup:

package main

import (
    "fmt"
    "sync"
)

var (
    count int
    wg    sync.WaitGroup
)

func increment() {
    defer wg.Done()
    count++
}

func main() {
    for i := 0; i < 1000; i++ {
        wg.Add(1)
        go increment()
    }
    wg.Wait()
    fmt.Println("Count:", count)
}
Copy after login

In the above code, we use waitgroup to ensure that all goroutines are executed before outputting the value of count.

2. Introduction to performance optimization strategies and application scenarios
In Golang, there are some performance optimization strategies that can help us improve the running efficiency of the program. The following introduces some commonly used optimization strategies and gives specific code examples.

2.1 Goroutine Pool
The startup and destruction of goroutine requires a certain amount of time and resources. If goroutine is frequently created and destroyed in a high-concurrency scenario, it will have a certain impact on the performance of the program. Therefore, using a goroutine pool to reuse already created goroutines is a performance optimization strategy.

The following is a sample code that uses the goroutine pool to process tasks concurrently:

package main

import (
    "fmt"
    "runtime"
    "sync"
)

type Task struct {
    ID int
}

var tasksCh chan Task

func worker(wg *sync.WaitGroup) {
    defer wg.Done()
    for task := range tasksCh {
        fmt.Println("Processing task:", task.ID)
    }
}

func main() {
    numWorkers := runtime.NumCPU()
    runtime.GOMAXPROCS(numWorkers)
    tasksCh = make(chan Task, numWorkers)
    var wg sync.WaitGroup
    for i := 0; i < numWorkers; i++ {
        wg.Add(1)
        go worker(&wg)
    }

    for i := 0; i < 10; i++ {
        tasksCh <- Task{ID: i}
    }

    close(tasksCh)
    wg.Wait()
}
Copy after login

In the above code, we obtain the number of CPU cores of the current machine through the runtime.NumCPU() function, and pass The runtime.GOMAXPROCS() function sets the value of GOMAXPROCS to the number of CPU cores to improve concurrency efficiency. At the same time, we use goroutines in the goroutine pool to process tasks concurrently to avoid frequent creation and destruction.

2.2 Lock-free data structure
Mutex locks will cause lock competition problems in high concurrency scenarios, resulting in performance degradation. In order to improve the concurrency performance of the program, we can use lock-free data structures to avoid lock contention.

The following is a sample code that uses atomic operations in the sync/atomic package to implement a lock-free counter:

package main

import (
    "fmt"
    "sync/atomic"
)

var count int32

func increment() {
    atomic.AddInt32(&count, 1)
}

func main() {
    for i := 0; i < 1000; i++ {
        go increment()
    }
    fmt.Println("Count:", atomic.LoadInt32(&count))
}
Copy after login

In the above code, we use the AddInt32 and LoadInt32 functions in the atomic package To perform atomic operations on the counter to achieve lock-free counting.

3. Combined Application of Synchronization Primitives and Performance Optimization Strategies
In actual development, we often encounter scenarios that require both ensuring concurrency safety and improving program operation efficiency. The following is a sample code that combines mutex and lock-free data structures:

package main

import (
    "fmt"
    "sync"
    "sync/atomic"
)

var (
    count int32
    mux   sync.Mutex
)

func increment() {
    atomic.AddInt32(&count, 1)
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 1000; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            mux.Lock()
            increment()
            mux.Unlock()
        }()
    }
    wg.Wait()
    fmt.Println("Count:", atomic.LoadInt32(&count))
}
Copy after login

In the above code, we use mutex to ensure safe access to count, and use atomic operations in the atomic package to increase count. operate. By combining mutex and lock-free data structures, we not only ensure concurrency safety, but also improve the running efficiency of the program.

Through the above example code, we can see that the combination of synchronization primitives and performance optimization strategies in Golang can improve program performance and efficiency in high concurrency scenarios. Of course, the specific application method needs to be selected based on specific business needs and performance bottlenecks. In short, reasonable selection and application of synchronization primitives and performance optimization strategies are the key to building efficient concurrent programs.

The above is the detailed content of The combined application of synchronization primitives and performance optimization strategies in Golang. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to safely read and write files using Golang? How to safely read and write files using Golang? Jun 06, 2024 pm 05:14 PM

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pool for Golang database connection? How to configure connection pool for Golang database connection? Jun 06, 2024 am 11:21 AM

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

Golang framework vs. Go framework: Comparison of internal architecture and external features Golang framework vs. Go framework: Comparison of internal architecture and external features Jun 06, 2024 pm 12:37 PM

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

How to save JSON data to database in Golang? How to save JSON data to database in Golang? Jun 06, 2024 am 11:24 AM

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

How to find the first substring matched by a Golang regular expression? How to find the first substring matched by a Golang regular expression? Jun 06, 2024 am 10:51 AM

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

How to use predefined time zone with Golang? How to use predefined time zone with Golang? Jun 06, 2024 pm 01:02 PM

Using predefined time zones in Go includes the following steps: Import the "time" package. Load a specific time zone through the LoadLocation function. Use the loaded time zone in operations such as creating Time objects, parsing time strings, and performing date and time conversions. Compare dates using different time zones to illustrate the application of the predefined time zone feature.

Golang framework development practical tutorial: FAQs Golang framework development practical tutorial: FAQs Jun 06, 2024 am 11:02 AM

Go framework development FAQ: Framework selection: Depends on application requirements and developer preferences, such as Gin (API), Echo (extensible), Beego (ORM), Iris (performance). Installation and use: Use the gomod command to install, import the framework and use it. Database interaction: Use ORM libraries, such as gorm, to establish database connections and operations. Authentication and authorization: Use session management and authentication middleware such as gin-contrib/sessions. Practical case: Use the Gin framework to build a simple blog API that provides POST, GET and other functions.

See all articles