Home Backend Development Golang Golang RabbitMQ: Architectural design and implementation of a highly available message queue system

Golang RabbitMQ: Architectural design and implementation of a highly available message queue system

Sep 28, 2023 am 08:18 AM
golang rabbitmq Architecture design

Golang RabbitMQ: 实现高可用的消息队列系统的架构设计和实现

Golang RabbitMQ: To achieve the architectural design and implementation of a highly available message queue system, specific code examples are required

Introduction:
With the continuous development of Internet technology With its wide application, message queue has become an indispensable part of modern software systems. As a tool to implement decoupling, asynchronous communication, fault-tolerant processing and other functions, message queue provides high availability and scalability support for distributed systems. As an efficient and concise programming language, Golang is widely used to build high-concurrency and high-performance systems. Its combination with RabbitMQ can provide us with a powerful message queue solution.

1. Architecture design:
When building a highly available message queue system, the following key factors must be taken into consideration:

  1. High availability: ensure that the system is Stability under various abnormal conditions, even if a certain node fails, the entire system can still work normally.
  2. Performance: The ability to process a large number of messages, low latency and high throughput are key indicators of system performance.
  3. Persistence: Ensure that messages will not be lost. Even if the system is down or fails, messages can still be recovered.
  4. Scalability: As the business develops and the number of users increases, the system can be easily expanded horizontally to meet growing needs.

Based on the above factors, the architecture of a highly available message queue system is designed as follows:

  1. Architecture diagram:
         Consumer A                 Consumer B                 Consumer C

         +---------+                 +---------+                 +---------+
         |   App   |   ---------->   |   App   |   ---------->   |   App   |
        /+---------+                 +---------+                 +---------+
       /
      /
     /
   +----+        +------+        +------+
   | P1 | <----> | Node | <----> | Node |
   +----+        +------+        +------+
   | P2 | <----> | Node | <----> | Node |
   +----+        +------+        +------+
   | P3 | <----> | Node | <----> | Node |
   +----+        +------+        +------+
Copy after login

Among them, P1, P2, and P3 are producers, Consumer A, Consumer B, and Consumer C are consumers, and App is a business application.
Node is a RabbitMQ cluster node that implements message replication and high availability through mirror queues.

  1. Implementation steps:

(1) Install RabbitMQ:
Message queue systems written in Golang need to install RabbitMQ first. For specific installation steps, please refer to the RabbitMQ official documentation.

(2) Create a producer:

package main

import (
    "fmt"
    "log"

    "github.com/streadway/amqp"
)

func failOnError(err error, msg string) {
    if err != nil {
        log.Fatalf("%s: %s", msg, err)
    }
}

func main() {
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    failOnError(err, "Failed to connect to RabbitMQ")
    defer conn.Close()

    ch, err := conn.Channel()
    failOnError(err, "Failed to open a channel")
    defer ch.Close()

    q, err := ch.QueueDeclare(
        "hello", // 队列名
        false,   // 是否持久化
        false,   // 是否自动删除 when unused
        false,   // 是否独占连接
        false,   // 是否阻塞等待
        nil,     // 额外的属性
    )
    failOnError(err, "Failed to declare a queue")

    body := "Hello RabbitMQ!"
    err = ch.Publish(
        "",     // exchange
        q.Name, // routing key
        false,  // mandatory
        false,  // immediate
        amqp.Publishing{
            ContentType: "text/plain",
            Body:        []byte(body),
        })
    failOnError(err, "Failed to publish a message")

    log.Printf(" [x] Sent %s", body)
}
Copy after login

(3) Create a consumer:

package main

import (
    "fmt"
    "log"
    "os"
    "os/signal"
    "syscall"

    "github.com/streadway/amqp"
)

func failOnError(err error, msg string) {
    if err != nil {
        log.Fatalf("%s: %s", msg, err)
    }
}

func main() {
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    failOnError(err, "Failed to connect to RabbitMQ")
    defer conn.Close()

    ch, err := conn.Channel()
    failOnError(err, "Failed to open a channel")
    defer ch.Close()

    q, err := ch.QueueDeclare(
        "hello", // 队列名
        false,   // 是否持久化
        false,   // 是否自动删除 when unused
        false,   // 是否独占连接
        false,   // 是否阻塞等待
        nil,     // 额外的属性
    )
    failOnError(err, "Failed to declare a queue")

    msgs, err := ch.Consume(
        q.Name, // 队列名
        "",     // consumer
        true,   // 自动应答
        false,  // 独占连接
        false,  // 阻塞等待时是否自动取消
        false,  // 额外属性
        nil,
    )
    failOnError(err, "Failed to register a consumer")

    forever := make(chan bool)

    go func() {
        for d := range msgs {
            log.Printf("Received a message: %s", d.Body)
        }
    }()

    log.Println(" [*] Waiting for messages. To exit press CTRL+C")
    // Handle SIGINT and SIGTERM.
    sigchan := make(chan os.Signal, 1)
    signal.Notify(sigchan, syscall.SIGINT, syscall.SIGTERM)
    <-sigchan

    <-forever
}
Copy after login

(4) Run the above code to implement a Golang and RabbitMQ-based Highly available message queue system.

Conclusion:
Through the combination of Golang and RabbitMQ, we can implement a highly available message queue system. Producer and consumer programs written in Golang can achieve asynchronous communication, decoupling and reducing dependencies between systems through RabbitMQ. Through reasonable architectural design and implementation code examples, we can efficiently build a message queue system with high availability, performance and scalability, providing important support for the construction and application of distributed systems.

The above is the detailed content of Golang RabbitMQ: Architectural design and implementation of a highly available message queue system. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Article Tags

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to safely read and write files using Golang? How to safely read and write files using Golang? Jun 06, 2024 pm 05:14 PM

How to safely read and write files using Golang?

How to configure connection pool for Golang database connection? How to configure connection pool for Golang database connection? Jun 06, 2024 am 11:21 AM

How to configure connection pool for Golang database connection?

Similarities and Differences between Golang and C++ Similarities and Differences between Golang and C++ Jun 05, 2024 pm 06:12 PM

Similarities and Differences between Golang and C++

How steep is the learning curve of golang framework architecture? How steep is the learning curve of golang framework architecture? Jun 05, 2024 pm 06:59 PM

How steep is the learning curve of golang framework architecture?

How to generate random elements from list in Golang? How to generate random elements from list in Golang? Jun 05, 2024 pm 04:28 PM

How to generate random elements from list in Golang?

Comparison of advantages and disadvantages of golang framework Comparison of advantages and disadvantages of golang framework Jun 05, 2024 pm 09:32 PM

Comparison of advantages and disadvantages of golang framework

What are the best practices for error handling in Golang framework? What are the best practices for error handling in Golang framework? Jun 05, 2024 pm 10:39 PM

What are the best practices for error handling in Golang framework?

golang framework document usage instructions golang framework document usage instructions Jun 05, 2024 pm 06:04 PM

golang framework document usage instructions

See all articles