


Python for NLP: How to automatically organize and classify text in PDF files?
Python for NLP: How to automatically organize and classify text in PDF files?
Abstract:
With the development of the Internet and the explosive growth of information, we are faced with a large amount of text data every day. In this era, automatically organizing and classifying text has become increasingly important. This article will introduce how to use Python and its powerful natural language processing (NLP) functions to automatically extract text from PDF files, organize and classify it.
1. Install the necessary Python libraries
Before we begin, we need to ensure that the following Python libraries have been installed:
- pdfplumber: used to extract from PDFs text.
- nltk: used for natural language processing.
- sklearn: used for text classification.
You can use the pip command to install. For example: pip install pdfplumber
2. Extract text from PDF files
First, we need to use the pdfplumber library to extract text from PDF files.
1 2 3 4 5 6 7 8 |
|
In the above code, we define a function named extract_text_from_pdf to extract text from a given PDF file. The function accepts a file path as a parameter and opens the PDF file using the pdfplumber library, then iterates through each page through a loop and extracts the text using the extract_text() method.
3. Text preprocessing
Before text classification, we usually need to preprocess the text. This includes steps such as stop word removal, tokenization, stemming, etc. In this article, we will use the nltk library to accomplish these tasks.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
In the above code, we first convert the text to lowercase, and then use the word_tokenize() method to segment the text into words. Next, we use the stopwords library to remove stop words and SnowballStemmer for stemming. Finally, we return the preprocessed text.
4. Text Classification
Now that we have extracted the text from the PDF file and preprocessed it, we can use machine learning algorithms to classify the text. In this article, we will use the Naive Bayes algorithm as the classifier.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
In the above code, we first use the joblib library to load the trained naive Bayes classifier model and bag-of-words model. We then convert the preprocessed text into feature vectors and then use a classifier to classify the text. Finally, we return the predicted classification result of the text.
5. Integrate the code and automatically process PDF files
Now, we can integrate the above code and automatically process PDF files, extract text and classify it.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
In the above code, we first define a function named process_pdf_files to automatically process files in the PDF folder. Then, use the listdir() method of the os library to iterate through each file in the folder, extract the text of the PDF file, and classify it. Finally, we print the file name and classification results.
Conclusion
Using Python and NLP functions, we can easily extract text from PDF files and organize and classify it. This article provides a sample code to help readers understand how to automatically process text in PDF files, but the specific application scenarios may be different and need to be adjusted and modified according to the actual situation.
References:
- pdfplumber official document: https://github.com/jsvine/pdfplumber
- nltk official document: https://www.nltk .org/
- sklearn official documentation: https://scikit-learn.org/
The above is the detailed content of Python for NLP: How to automatically organize and classify text in PDF files?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics





PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.
